Мирослав Оцокољић

ЦИКЛИЧНОСТ СУШНИХ И ВОДНИХ
ПЕРИОДА У СРБИЈИ

Штампано помоћу добијеном од Министарства
за науку и технологију Србије

SERBIAN ACADEMY OF SCIENCES AND ARTS GEOGRAPHICAL INSTITUTE "JOVAN CVUIC'

```
S P E C I A L I S S U E S
    N}\mp@subsup{N}{}{0}4
```


Miroslar Ocokoljic

CYCLIC VARIATIONS OF DROUGHTY AND WATERY PERIODS IN SERBIA

Edited by
 Dr Verka Jovanovid

Editorial Committee
Dr Aleksandar Veljkovic
Dr Milovan Radovanovic
Dr Miroslav Ocokoljic
Mr Radmilo Jovanovic

BELGRADE

1994

СРПСКА АКАДЕМИЈА НАУКА И УМЕТНОСТИ ГЕОГРАФСКИ ИНСТИТУТ "ЈОВАН ЦВИЈИБ"

П О СЕ Б Н А И З П А Њ А
КЊИГА 41

Мирослав Оцокољић

цикличноСт сушниХ и водниХ
ПЕРИОДА У СРБИЈИ

у р е д н и
Др Верка Јовановић
уре ђив а чки о д б о р
Др Александар Велковић
Пр Милован Радовановић
Пр Мирослав Оцокољић
Mp Марина Тодоровић
Мр Рапмило Јовановић

> Р е е н е е т т:
> Др Душан Дукнћ
> Др Томнслав Ракићевић
 Добрнла Стајић
Обрађено програмом Signum 2－штампано на HP LaserJet III

К а р т о г р а фск а о б р а д а Зорнца Мари方

Мримљено на седници Редакционог одбора Института 12．септембра 1994．гоцине
MPELITOBOP Tp
УВOД 06
КРИТЕРИУУМИ ЗА ПРОУЧАВА円Е ЦИКЛИЧНОСТИ ОТИЦА円А 07
АНАЛИЗА ЦИКЛИЧНОСТИ ОТИЦАЊА ПУНАВА 07
Анализа циклпиности помоћу сумарнкх кривих мопулних одступања од просеине врепности 11
Провера цикличностк храЋих хидролошких низова 13
Меродавми хидролошии низови 15
Честина појавынвана сушних и водинх година 19
Честина појавдквана средне месеиних протицаја 23
 25
 30
Продноза појавбивана суиниж и водних периода на Мунаву 32
YECTUMA ПOJABJBXBAHA IERAMHMX ПPOTUIIAJA HA CABM X MOTYRHOCTY HBMXODOT MPOTHOSMPABA 33
Прогноза средия дежадинж протицаја 38
LUKNKYLOCT ГOLMLWHK H MAKCHMAJTKKX ПHEBHMK TAMABLHA Y BEOTPAMY 44.
 4.4
 47
CУUHHK ए BOMHM ILEPHOLU HA OCTATMM PEKAMA CPEMIE 54
Tuca 54
Caba 61
прина 67
Лиим 72
Benrrala Mopara 76
Зamanha Mopaba 83
Koap 88
Hихиава 93
Црницде 96
OHIHTK ЗAKJBYYAK 98
תИTEPATYPA 104
SUMMARY 105

Монографија "Цнкличност сушннх и водних периода у Србији" резултат је вишегодишњег рада, који је аутор започео у Хндрометеоролошком заводу Србије, а наставио у Географском институту "Јован Цвијић"САНУ. Хидролошки подаци неопходни за израду ове студије сукцесивно су прикупљани и обрађивани у периоду 1923-1985. Изузетно, за Дунав они су елаборирани и за прошли век. Подаци су објавлени у публикацијама Хидрометеоролошке службе Србије и Југославије, Института за водопривреду "Јарослав Черни", Енергопројекта, Водопривредних организација, Научних института, Дунавске комисије (Будимпешта), UNESCO-a и других организација. На овај начин формирани су низови о протицају Дунава за 150 година непрекидних осматрања и мерења, а за друге реке у Србији углавном за период од 60 година. Сушни и водни периоди проучени су и анализирани применом статистичких метода, вероватноћа, метода аналогије, честином појављивања и трајањем, класификацијом и рангирањем хидролоиких година, распоредом сушних и водних периода, уз осврт на прогнозу њихових промена у наредним годинама. У обради су коришћене средњегодишње, максималне и минималне, ређе месечне, декадне или дневне вредности. У посебном поглавлу проучена је цикличност годишњих и максималних дневних падавина у Београду за последњих 100 година да би се упоредио њихов однос према цикличностима хидролошких низова

Y оквиру анализе дугогодишњих хидролошких низова, дати су критеријуми за утврђивање меродавних хидролошких низова на нивоу годишњих, сезонских и месечних вредности. Овом обрадом обухваћене су веће реке Србије, распоређене на целој неној територији и то са различитим речним режимима, од мешовитог на северу до чисто плувијалног у централној или јужној Србији.

Abstract

увод

Под појмом цикличност уопште узев, подразумевамо хронолошко смењивање сушних и влажних периода, при чему се сваки период одређеног временског трајања који садржи један сушни и један влажни период назива хидропошкн цнклус. Просечне вредности таквог циклуса или више њих су најприближније вишегодишњим вредностима који се добијају из низова не краћих од 50,75 , 100 или више година. Овакве вредности сматрају се нормалним (репрезентативним) за изучавање режима река и за изградњу великих хидротехничких и водопривредних објеката. Дужина цикличног периода варира од реке до реке, код већих река (мешовити режим), тај период је краћи, а најдужи је код мањих река (плувијални режим). Утврђивање меродавног периода је данас један од најодговорнијих задатака савремене хидрологије, јер већина река у свету има кратке низове осматрања, што првенствено важи за афричке и азиске земље где су по правилу највеће реке на Земльн, на којима ничу водопривредни гиганти за произвоцњу електричне енергије, за пловидбу, наводњавање или водоснабдевање. У недостатку мерених података користе се методе аналогије и регионалне анализе, али се увек поуздано не може утврдити с којом тачношбу можемо да рачунамо на такве податке и у којој мери су такви низови хомогени. Догађа се, да се усвајају подцењене или прецењене вредности што има за последицу угрожавање сигурности животне средине (људства и имовине), или непотребно трошење економских инвестиционих средстава. Цикличност речног отицања на нашим рекама је мало истраживана. Још увек се не располаже са доволно дугим низовима, нпр. дужим од 50 или 75 година, да би се једна таква анализа могла извести. Само неке реке на којима су успоставлена осматрања 1923. године или раније располажу са подацима дужим од 60 година, под условом да су на тим профилима била непрекидна и поуздана осматрања и по правилу једнозначне криве протицаја (мања променљивост речног корита). За сада су то профили на Дунаву (Оршава-Кладово), на Сави (Сремска Митровица), Дрини (Бајина Башта), Лиму (Пријепоъе), Ибру (Рашка), Нишави (Бела Паланка). За све те реке располагало се са низовима на Дунаву дужине до 150 година, а за остале водотоке не дужим од 60 година.

КРИТЕРИЈУМИ ЗА ПРОУЧАВАњЕ ЦИКЛИЧНОСТИ ОТИЦАњА

Како је у овом раду обрађено више река са различитим периодима осматрања, за анализу цикличности примењено је више метода. Прво су употребљене статистичке методе, затим метод аналогије, модулних коефицијената одступања чланова низа од просечне вредности, метод сумарних кривих модулних одступања. Анализиране су честине појављиваюа супних и водних периода, заступленост средњих, минималних и максималних протицаја, хронологија појављивања апсолутно максималних и минималних вода, класификација хицролошких година по воцности (сушне, водне). Примењене су одговарајуће расподеле, а дат је осврт на прогнозу појављивања водних и сушних периода уз оцену меродавности низова, поређењем краћих са дужим у оквиру исте реке или са суседним сличног режима. На овај начин прате се промене о режиму река и доносе закључци у погледу кориићења података за изградњу водопривредних објеката.

АНАЛИЗА ЦИКЛИЧНОСТИ ОТИЦА円А РЕКЕ ДУНАВ

Дунав је река са релативно већим бројем хидролошких станица са осматрањима дужим од 50 или виие година. Најдужа су на румунској станици Оршава која је радила од 1840-1972. гоцине, то јест до потапања језером од XE " Бердап". После 1972. године низ је допуњен подацима добијеним помоћу производње електричне енергије и мерењем преливних вода на брани у Кладову и тако формиран 150-годишњи низ о протицају у периоду 1840-1989. година (таб. 1). Хидролошка станица Оршава је једна од поузданих станица на Дунаву, јер се налази у Ђердапској клисури која је изграђена од стена, речно корито је постојано а нема изливања великих вода. Свакодневна мерења водостаја и повремена протицаја омогућила су да се успостави једнозначна и поуздана крива протицаја и тако одреде карактеристике отицања Дунава у Бердапској клисури (ск. 1) Подаци су објављени у публикацијама УНЕСКО-а [UNESCO, 1974].

Површина слива Дунава у профилу Оршава је 576.232 km^{2} са котом " 0 " осматрања од 43.87 m у опносу на Јадранско море и 44.36 m у односу на Црно море. Станица је на 955 km тока Дунава од ушћа у Црно море. Средњегодишњи водостај у природном режиму је 275 cm , апсолутно најнижи је - 52 cm (9.I.1893.) и - 26 cm (27.X.1947.) и апсолутно максимални од 648 cm (17.IV.1895.). Ширина корита реке је при малим водостајима око 480 m [Годншњак Дунавске комнсије, 19651.

Метод аналогије. - Цикличност отицања Дунава анализирана је статистичком обрадом средњегодишњих протицаја (таб.1.) у којој су вредности приказане по деценијама са просеком за сваку од 15 деценија и одступањем од просека периода 1840-1989. година, који износи $\mathrm{Qs}=5456 \mathrm{~m}^{3} / \mathrm{s}$.

Таб. 1. - Средне годишњи протицаји Дунава ($\mathrm{m}^{3} / \mathrm{s}$) по деценијама за 150-годишни период 1840-1989, Оршава-Кладово
Tab. 1. - Mean annualy discharge of the Danube ($\mathrm{m}^{3} / \mathrm{s}$) in the decades in the one hundred fifty period 1840-1989, Oršava-Kladovo
$\begin{array}{lllllllllllll}\text { Год. } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \mathrm{Sr} . & \mathrm{DQ}(\%)\end{array}$
$184049805100474058706060698059706190506047805573 \quad 2.10$ $\begin{array}{lllllllllllll}1850 & 6480 & 6400 & 5760 & 7100 & 4635 & 6100 & 4600 & 4250 & 4470 & 5020 & 5482 & 0.04\end{array}$ $\begin{array}{lllllllllllll}1860 & 6400 & 4770 & 4210 & 3340 & 5270 & 4540 & 3700 & 5770 & 5070 & 4560 & 4763 & -13.00\end{array}$ $\begin{array}{llllllllllll}1870 & 6350 & 6370 & 4900 & 4520 & 4310 & 4760 & 6770 & 5840 & 6520 & 7060 & 5740\end{array} 5.20$ $\begin{array}{lllllllllllll}1880 & 5400 & 6700 & 4900 & 5770 & 4890 & 4820 & 4960 & 4650 & 5850 & 5520 & 5346 & -2.00\end{array}$ $\begin{array}{llllllllllllll}1890 & 4400 & 4620 & 5400 & 4970 & 3960 & 6180 & 5890 & 6600 & 4400 & 4800 & 5122 & -6.00\end{array}$ $190060505140552050604730535055305530411047105173-5.00$ $191067604610654059506340805064805440413070506135 \quad 12.40$ $19205600368060005550612050207220531046504580 \quad 5373-2.00$ $193049205720520051604720480056507440542054605449 \quad 0.00$ $\begin{array}{lllllllllllll}1940 & 7390 & 7900 & 6030 & 3810 & 6670 & 5120 & 4190 & 4130 & 5530 & 3980 & 5475 & 0.30\end{array}$ 19504150538051104760498071505910511056304900 $196056504390563048004830 \quad 7440 \quad 6890 \quad 6140 \quad 5180 \quad 5250 \quad 5620 \quad 3.00$ $197080004280510045006400606051906050596063805779 \quad 6.20$ $\begin{array}{llllllllllllll}1980 & 6880 & 6500 & 5550 & 4580 & 5020 & 5240 & 5200 & 5740 & 5250 & 4860 & 5482 & 0.50\end{array}$

150 годишњи просек $5456 \mathrm{~m}^{3 / \mathrm{s}}$

Због дужине периода овај се низ сматра репрезентативним (меродавним) за изучавање режнма реке и за хидроенергетска искориићаваюь вода, а служи и као репер за проверавање меродавности краћих пизова на другим већим рекама сличног режима. Варијације протицаја Дунава су веома мале, у истом периоду, коефицијенат варијације годишних протицаја је $\mathrm{Cv}=0,17$, а коефицијенат асиметрије криве распоцеле протицаја $\mathrm{Cs}=0,47$. Одступања 10 -годишњег просека од нормалне вредности ($5456 \mathrm{~m}^{3} / \mathrm{s}$) су такође доста уједначена. Поређењем 10-годиињег просека 15 изабраних деценија са вишегодиињьом вредношћу, дошло се до показательа да скоро пет деценија има већа одступања од $\pm 5.0 \%$, док је код других девет деценија та разлика у. толерантним границама. Највеће одступање је у периоду 1860-1869.година који је суинији за 13.0% и 1910-1919. година који је влажнији за 12.4%. Већина осталих деценија има отицање веома приближно виинегодишњем, па се за Дунав као велику реку може рећи да има веома стабилан режим са веома малим променама протицаја, што је узроковано осим пространог слива, још и веговим комбинованим (мешовитим) режимом. Према томе, као један од закључака могао би да буде, да се за Дунав и њему сличне реке могу добити меродавни низови и са десет година осматрања, само је такве низове потребно верификовати са реком која има дуже низове осматрана. За бројне профиле на Дунаву од Регензбурга до ушћа у Црно море на овај начин се могу контролисати и продужавати краһи низови до граница њихове меродавности, коришћењем дугогодишних података хидролошке станице Оршава.

У оквиру анализе података у 150 -годишњем низу, посебно је тестиран период 1972-1989. година (19 година) за време рада хидроелектране "Бердап" за који су подаци, како је раније наведено, добијени помоћу производње електричне енергије и мерењем висине воде на преливним праговима. 3а исти периоп, средњегодишњи протицај је $5586 \mathrm{~m}^{3} / \mathrm{s}$ који се разликује од вишегодишњег за 2.3%. Методом аналогије који је напред примењен за оцену меродавности појединих краћих низова према дужем у оквиру исте станице омогућава проверу података станица на истом току, у овом случају на Дунаву, али и за станице на другим рекама, на пример његовим притокама, Сави, Тиси, Драви. Сава у Сремској Митровици има $\mathrm{Qs}=1562 \mathrm{~m}^{3} / \mathrm{s}$ у периоду 1950-1989. година. За исти период протицај Дунава у Бердапу је $5550 \mathrm{~m} 3 / \mathrm{s}$, који је већи од вишегодишњег просека за $94.0 \mathrm{~m} 3 / \mathrm{s}$ (1.72%), па се узима

да је отицање Саве у наведеном периоду хомогено. Или дру ги пример, Дунав у профилу Панчево има средњегодишњи протицај у перноду 1951-1970. гоцина од $5559 \mathrm{~m} / \mathrm{s}$. У истом периоду протицај Дунава у Ђердапу се мало разликује од нормалне вредности па се и овај период узима као репрезентативан.

Cк. 1. - График средне годишњих протицаја Дунава у nepuody 1840-1989. 2од. (Opuasa - Кладово)

Sk. 1. - Graphic of mean annual discharge of the Danube river for the 1840-1989. period at (Orsava-Kladovo)

Статнстичке методе. -- Укључују проверу просечног годишњег отицаја на основу израчунавања његове средње квадратне грешке [Лучшева А. A, 1976], то јест по обрасцу:

$$
\sum Q_{S}=\frac{C_{V}}{n} \cdot 100
$$

где је Σ Qs-средње квадратна грешка вишегодишњег протицаја у \%, Сv-коефицијент варијације средњегоциињег протицаја, n-број осмотрених година. За случај Саве у Сремској Митровици која у периоду 1950-1989. година има Qs=1562 m³/s, Σ Qs по наведеном обрасцу је $2,53 \%$, или изражено у апсолутним јединицама $39,5 \mathrm{~m}^{3} / \mathrm{s}$. За ову вредност период може да одступа у позитивном и негативном смислу од вишегодишње вредности. Други случај је показан на примеру Велике Мораве у Љубичевском мосту у периоду 1971-1990. година у којем је $Q_{s}=243 \mathrm{~m}^{3} / \mathrm{s}$ са $\mathrm{C}_{\mathrm{v}}=0.29$ и $\mathrm{n}=20$ година. Према истом обрасцу, средње квадратна грешка је $\sum Q_{s}=6.5 \%$, односно овај низ би требало нешто кориговати, јер грешка прелази толерантних 5.0%, то јест изабрати други меродавни период.

У оквиру исте методе користи се и величина грешке коефицијента варијације средњегодишњег протицаја који се одређује по обрасцу:

$$
\Sigma C_{v}=\sqrt{\frac{1+C_{v}{ }^{2}}{2 n}} \cdot 100
$$

где је $\sum \mathrm{Cv}_{\text {- грешка коефицијента варијације у } \%, \mathrm{Cv} \text { - коефи- }}$ цијент варијације, n - број година. На пример, река Тиса у периоду 1931-1970.година има просечно отицање од $766 \mathrm{~m}^{3} / \mathrm{s}$ са $\mathrm{Cv}=0.35$, за који је "грешка коефицијента варијације 11.8%. Према истој литератури, ова грешка је у границама дозвољених одступања; она се налази између 10-15 \%, према коме је низ цикличан, то јест у њему је заступлен подједнак број сушних и влажних година. У супротном , ако овај услов није испуњен, ако је $\sum \mathrm{Cv}_{\text {и испод }} 10 \%$ или изнад 15%, онда се низ допуњује или скраћује све потле док се не испуни тражени услов.

Анализа цикличности помоћу сумарних кривих модулних одступања

Методом руских хидролога [Практическая гидропогия, 1976], анализирана је цикличност годишњих протицаја Дунава у Ђердапу одређивањем модулних коефицијената (К)

који се добнјају оцносом протицаја сваког члана низа са просечном вишегодишњом вредношћу. Одузимањем К од јединице н сумирањем ових вредности у кумулативном односу и поделом сваког таквог збира са коефицијентом варијације добијена је рачунска сумарна крива модулних одступања од просечне вредностн. Ове вредности су нанете на дијаграм (ск. 2), где је на ординати $\Sigma(\mathrm{K} 1) / \mathrm{Cv}$, а на апсциси године периода 1840-1989. Добијен је хидрограм који показује хронолошку променљивост годишњег протицаја, или наизменично смењивање сушних и водних периода. Временски периоди у току којих су интензитети прираста сумарне криве позитивне (изнад 0) одговарају влажном периоду, и обрнуто, временски периоди у току којих су такви прирасти негативни, сушном периоду. Период времена који обухвата један влажан и један сушан период представља хидролошки циклус [Хндропошка студија Саве, 1974].

На дијаграму са скице 2 могу да се издвоје 4 циклуса, а у оквиру њих и микроциклусн. Сваки циклус има своје карактеристике, трајање, сушнији и воднији период и просечну вредност. Редослед њиховог појављивања је следећи:

I цнклус од 1853-1881. године ($\mathrm{n}=29$), означен тачкама B-C-D, слабо је изражен, силазна линија цијаграма означава сушнији (маловоднији) период (В-С), знатно је дужег трајања у односу на влажнији (воднији) период (С-В) који је краћег трајања а ранији део хидрограма од 1840-1852. године (A-B) је део неког предходног циклуса и није узет у разматрање.

II циклус је био у периоду 1882-1926. године ($\mathrm{n}=45$) са подједнаким трајањем сушног и влажног периода, означен тачкама D-E-F. Просечна вредност овог щиклуса је $\mathrm{Q}=5323 \mathrm{~m}^{3} / \mathrm{s}$, веома је близак 150 -годишнем просеку($\mathrm{DQ}=2.0 \%$), па се узима као репрезентативан. Просечно Ks за овај период је 0.98 које се добија по обрасцу:

$$
K_{s}=1+\frac{1_{k}+1_{p}}{m}
$$

где је Ks- просечни модулни коефицијенат периода 1882-1926, а l_{k} и $l_{\text {р }}$ крајња и почетна вредност суме $\mathrm{K}-1 / \mathrm{Cv}$, а m - број година Яериода.

III циклус је веома кратког трајања па се не може узети као меродаван за анализу; његов период везан је за године од 1927-1942. (16 година) са преломом између влажног и сушног периода у 1935. години. Знатно је дужи сушнији

од влажнијег, кога чине три изузетно водне године (1940, 1941, 1942). Циклус је означен словима E-G-H за који је просе-

IV циклус, као последни проучаваног периода је са временским трајањем од 40 година. Има правнлан распоред сушних и впажних година са преломом у 1964. години. Циклус је означен словима $\mathrm{H}-\mathrm{K}-\mathrm{L}$ за који је $\mathrm{Ks}=1.04$, то јест он је воднији од вишегодишњег просека за 4%.

Треба истаћи да се у оквиру 4 макро циклуса издвајају и мнкро циклуси, наравно краћег трајања, на пример карактеристичан један такав микро циклус је био од 1954-1956.године који се појављује као влажан у оквиру сушнијег периода IV цнклуса (1943-1964). Он је везан за за веома влажну послератну 1955. годину.

Када се говори о цикличностима влажних и сушних периода мора се истаћи да у сваком сушном или влажном периоду нису заступљене увек сушне односно влажне године, иако се ради о воднијем периоду, већ напротив, сваки сушни период укључује известан број влажних година, а сваки влажнији период одређен број сушних година. На пример у периоду 1943-1964. година који је означен као сушнији IV циклуса, има 14 средњих, 6 сушних и 2 водне године, или период 1965-1982. година, означен као водни период истог циклуса садржи 10 водних, 6 средњих и 2 сушне године. Просек првог сушнијег периода је $5082 \mathrm{~m}^{3} / \mathrm{s}$, другог влажнијег $5986 \mathrm{~m}^{3} / \mathrm{s}$ са одступањем другог у односу на први за 18%.

Провера цикличности краћих хидролошких низова

Дијаграм цикличности сушних и водних периода Дунава од 1840-1989.године, (ск. 2) служи и за проверу цикличности хидролошких краћих низова на другим станицама на Дунаву или другим већим рекама сличног режима. На истом дијаграму паралелно је приказан дијаграм цикличности протицаја Дунава у профилу Богојево ($\mathrm{F}=251593 \mathrm{~km}^{2}$). Обрађен је период 1940-1982. година за који је просечно годишње $\mathrm{Q}=2978 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{Cv}=0,19, \mathrm{n}=43$. Паралелним поређењем два дијаграма на скици 2 потврђено је хронолошко слагање дијаграма између Богојева и Оршаве-Кладова. Када се за краћи период израчуна Ks, добија се вредност од 1,04, исто као и за IV циклус дужег периода, из чега произилази да је Дунав у профилу Богојево био воднији за $4,0 \%$ од 150 -годишњег просека, па се низ 1940-1982. година прихвата као цикличан.

Слично се може поступити за остале профиле на Дунаву од Бездана до Великог Градишта или профиле на Тиси и Сави. Међутим, када се пореде отицања Дунава по годинама, постоје битније разлике у времену појавлнвања макснмалних и минималних протицаја. Највећи средњегодишњи протицај у Богојеву је 4323 (1965. године), а у Бердапу (1940-1982) $8000 \mathrm{~m}^{3} / \mathrm{s}$ (1970. године). Или Друга година по водности је 1941 ($4165 \mathrm{~m}^{3} / \mathrm{s}$) која се по водности поклапа са истом годином у Ђердапу ($7900 \mathrm{~m}^{3} / \mathrm{s}$). Такође ни године са минималним отицањем не морају ца се исто понашају између ова два профила. Најсушнија година у Оршави је $1943\left(3810 \mathrm{~m}^{3} / \mathrm{s}\right)$ и 1949 $\left(3980 \mathrm{~m}^{3} / \mathrm{s}\right)$, а у Богојеву $1971\left(2010 \mathrm{~m}^{3} / \mathrm{s}\right)$ и $1947\left(2244 \mathrm{~m}^{3} / \mathrm{s}\right)$. Према томе, на режим појављивања карактеристичних протицаја горњег или доњег Дунава у нашој земљи утичу пре свега његове веће притоке, у првом реду Тиса и Сава, а онда Драва и Велика Морава. Ово правило не важи за месечне вредности отицања, код којих је потврђена идентичност у реж иму са највећим отицањем у пролеће, а најмањим у јесен.

Меродавни хндролошки низови

Када се утврђују меродавни хидролошки низови мора се поћи од тога о којој се величини отицаја ради, да ли су то годинње, сезонске, месечне или декадне вредности. Иако је у предходним поглављима било говора о низовима годишњих протицаја, њиховој цикличности и репрезентативности тестирањем помоћу виие метода, у овом поглавлу размотриће се меродавни хидролошки низови за временске јединице: годину, сезону и месеце. Основа за то су осматрања на Дунаву у Бердапу у наведеном 150-годишњем периоду [УНЕСКО, 1974; ХЕ"Ђердап", 19931.

Годншњи протицаји. - Све месечне вредности отицања изражене су за 25-годишње периоде са просецима којих је у наведеном низу било 6 , са одступањима између појединих 25 -годишњих низова као и одступањем краћих низова према вишегодишњем (таб.2). Уз то, за сваку просечну месечну вредност израчунати су годишњи просеци, па је за први период 1840-1864, година, $\mathrm{Qs}=5380 \mathrm{~m}^{3} / \mathrm{s}$ који се од 150-годишњег разликује за $76 \mathrm{~m}^{3} / \mathrm{s}(1.4 \%)$; за други је исти случај ($\mathrm{Qs}=5380 \mathrm{~m}^{3} / \mathrm{s}$), у трећем (1890-1914.година), просечни годишњи отицај је незнатно нижи ($5330 \mathrm{~m}^{3} / \mathrm{s}$) са приближно истим одступањем, док четврти 25-годишњи просек (1915-1939. година) има незнатно веће отицање за 4.5%. То донекле важи и за следећи низ (1940-1964. година) који је сушнији за 2.5%.

Период (1965-1989. година) са $\mathrm{Qs}=5745 \mathrm{~m}^{3} / \mathrm{s}$ воднији је оп нормалне вредности за 5.3\%. Слични односи важе и за друге усвојене 25 -годинње просеке било ког изабраног периода унутар вишегодишњег ннза. Према томе, када су у питашу годишње вредности осим што је раније речено, да је за велике реке довољан низ и од 10 година које је потребно верификовати са неком станицом са дугогодишњим осматрањима; међутим, уколико та контрола није могућа неопходно је формирати низове од најмање 25 година генерисањем краћих низова при чему се користи најближа аналог станица на истој или суседној реци.

Таб. 2.- Поређене 25-ьодишних просека месечних и годишних протичаја на Дунаву у периоду 1840-1989.
Tab. 2.- Comparing 25-annualy averages monthly and annualy discharge of the Danube in the period 1840-1989.

Период I II III IV V VI VII VIII IX \quad X \quad XI | XII | Год. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllllll}1840-1864 & 4060 & 4780 & 6030 & 7250 & 7440 & 6710 & 5660 & 4770 & 4240 & 4080 & 4790 & 4800 & 5380\end{array}$ $\begin{array}{llllllllllllll}1865-1889 & 4660 & 4540 & 6150 & 7680 & 7860 & 6390 & 5290 & 4280 & 3870 & 3930 & 4780 & 5170 & 5380\end{array}$ $\begin{array}{llllllllllllll}\mathrm{D}(\%) & 14.8 & -5.0 & 2.0 & 5.9 & 5.6 & -4.8 & -6.5 & -10.3 & -8.7 & -3.7 & -0.02 & 7.7 & 0.0\end{array}$ $\begin{array}{lllllllllllllll}1890-1914 & 3810 & 4300 & 6300 & 7680 & 7630 & 7060 & 5790 & 4640 & 3960 & 4030 & 4240 & 4480 & 5330\end{array}$ $\begin{array}{lllllllllllll}\mathrm{DQ}(\%) & -8.2 & -5.3 & 2.4 & 0.0 & -3.0 & 10.5 & 9.4 & 8.4 & 2.3 & 2.5 & -11.3 & 13.4\end{array}-1.0$ $\begin{array}{llllllllllllll}1915-1939 & 5360 & 4900 & 6480 & 7580 & 7840 & 6310 & 5300 & 4340 & 4010 & 4180 & 5370 & 5180 & 5570\end{array}$ DQ(\%) $\quad \begin{array}{lllllllllllll}40.7 & 14.0 & 2.8 & -2.3 & 2.8-10.6 & -8.5 & -6.5 & 1.3 & 3.7 & 26.6 & 15.6 & 4.5\end{array}$ 1940-1964 $453050006940810071606220 \quad 531041903380 \quad 336046505040 \quad 5320$ $\begin{array}{llllllllllll}\mathrm{DQ}(\%) & -15.5 & 2.0 & 7.1 & 6.8 & -8.7 & -1.5 & 0.2 & -3.5 & -15.3-19.6-13.4 & -2.7 & -4.5\end{array}$ $\begin{array}{lllllllllllllll}1965-1989 & 5220 & 6130 & 6850 & 8155 & 7775 & 6930 & 5820 & 4610 & 4070 & 3940 & 4180 & 5280 & 5745\end{array}$ $\begin{array}{lllllllllllllllllll}\text { DQ(\%) } & 15.2 & 22.6 & -1.3 & 0.6 & 8.6 & 11.4 & 9.6 & 10.0 & 20.4 & 17.3 & -10.2 & 4.8 & 8.0\end{array}$

Месечни протицаји. - у погледу средње месечних протицаја према подацима из табеле 2. постоји битнија разлика између појединих 25 -годишњих просека. Она је највећа између прва два перида 1840-1864. година и 1865-1889. гоцина; у јануару је 14.8% а у августу - 10.3%. Периоди 1865-1889. година и 1890-1914. година највише се разликују у децембру (13.4%), новембру (11.3%), јуну (10.5%) итд. Следећа два периода 1890-1914. година, 1915-1939. година такође имају већа одступања, у јануару је оно 40.7%, фебруару 14%, новембру 26.6% и децембру 15.6%. Као што се види, разлике у оквиру једног истог месеца могу да буду од -15.5 до 47.7 (I), од -5.3 до
22.6 (II), од - 10.6 цо 11.4% (VI). Види се да су највећа одступана у зимским и јесењим и донекле летњим месецима и поклапају се са коефицијентима колебања месечног протицаја, која су највећа на Дунаву у зиму и јесен, а најмања у пролеће и лето [Оцокољић М. 1991]. Јануар је месец са највећом вредношћу коефицијента варијације а онда за њим долази октобар. Прецизније речено, највећа одступања месечних протицаја у оквиру 25 -годишњег просека прате најмање месечне протицаје. С друге стране у појединим месецима ове разлике су толерантне, крећу се испод 5%, на пример такав је случај измеђуу периода 1840-1864. година и 1865-1889.година. Одступања су слична када се 25 -годишњи просеци месечних врдности упореде са вишегодишњим месечним просеком. Јануарски просек периода 1840-1864.година нижи је за 12.2% од вишегодишњег, док та иста разлика код периода 1890-1914. година износи -17.5%. Закључак је да се месечни меродавни протицаји за реке какав је Дунав не могу добити из низова од 25 година, па се поставља питање колико низ мора да буде дуг да би тај услов био испуњен. Поређењем и анализом низова 30 -годишњег, 40-годишњег и 50-годишњег периода, дошло се до податка да су за месечне меродавне низове најпоузданији просеци који се , добијају из осматрања дужине приближно око 50 година. Да би то и аргументовали, из 150-годишњег низа издвојено је пет 50 -годишњих периода који су међусобно упоређени, па је констатовано да они мало одступају. То је показано на примерима 1840-1889. година, 1865-1914. година, 1890-1939. година, 1915-1964. и 1940-1989. година. У таб. 3. је дат пример упоређивања периода 1915-1964. година са одступањем од просечних вишегодишњих месечних вредности.

Таб. 3. - Меродаван низ (1915-1964) месечних протицаја Дунава (Оршава-Кладово)
Tab.3. - The authoritative series of monthly discharge of the Danube (Oršava-Kladovo)
Период I II III IV V VI VII VIII IX X XI XII год.

1915-1964 4945495067107840750062655303426536953770501051105445 Qs (150 god.) 4608494264587740761766045529447139233923466849935456

Према томе, када су у питању месечни меродавни низови, дужина осматрања мора да буде око 50 година.

Меродавни низови за сезонске вредности отицања. -

 Када се располаже са меродавним месечним протицајима, лако се добијају меродавни сезонски протицаји. Међутим, уколико се за анализу режима не обрађују месечни већ само сезонски, онда је потребно спровести посебну обраду сезонских протицаја за 4 квартала у години. Дужина меродавног периоца за сезоне мора да се нађе између месечних и годишњих меродавних периода то јест између 25 и 50 година. Да би то утврдили извршене су пробе узимањем узорака из 150 -годишњег периода. Укупно је тестирано 20 сезона у низовима од по 25 година а потом од 35 година. За 25 -годишње просеке обрађено је 6 периода по сезонама (табела4.). Као што се из поцатака види постоје значајна одступања како унутар самих сезона, тако између њих и вишегодишњих просека. У оквиру једне исте сезоне, разлике могу да буду и $1000 \mathrm{~m}^{3} / \mathrm{s}$, а изражено у процентима то је око 20%.Таб. 4. - Тестирање 25-ъодишњих низова сезонских протицаја Дунава
Tab. 4.-A testing 25 -annual series for seasonal discharge of the Danube

период	зима (XII-II)	mролеће (III-V)	пето (VI-VIII)	јесен (IX-XI)
$1840-1864$	4547	6907	5713	4370
$1865-1889$	4790	7230	5320	4193
$1890-1914$	4197	7203	5830	4077
$1915-1939$	5147	7300	5317	4520
$1940-1964$	5857	7400	5240	3797
1965-1989	5543	7593	5787	4163
Qs (150. god.)	4847	7272	5535	4170

ОД укупно тестиране 24 сезоне у 14 случајева те разлике су толерантне, крећу се у границама од $\pm 5,0 \%$, међутим у 10 сезона те вредности се крећу изнад $5,0 \%$ и могу да достигну вредност као што је речено и до 20%. Дакде, 25-годишњи низови не могу увек да буду меродавни за изучавање отицања када су у питању сезоне у години. Из истих разлога потребно је изабрати дуже низове. Истина, само су периоди 1840-1864. и 1865-1889. били циклични. Значи, да је из једног дугог периода могуће пронаћи 25 -годишње репрезентативне низове, али је њих нужно упоредити са

дугогодишњим низом, или ако се за неку реку не распопаже са 25 -годишьим низом, као што је случај са већином наших река, онда се краһи низ генерине на дужи, путем односа са другом станицом, па се онда приступа провери његове цикличности.

Тестнраве 35 -годииньих низова. - 3à анализу су изабрани периоди $1840-1874, \quad 1865-1889$, $1890-1924, \quad 1930-1964$. Укупно је тестирано 16 сезона 35 -годишњих низова (таб. 5). Резултати су показали да нема битнијих разлика између протицаја унутар сезона као и њихових одступана од 150-годишнег просека.

Таб. 5. -Тестирање 35-ъодишњих низова сезонских протицаја Tab. 5.-A testing 35 -annual series for seasonal discharges

Период	Зима	Пролене	Лето	Јесен
$1840-1874$	4601	6856	5515	4143
$1865-1890$	4463	7150	5489	4135
$1890-1924$	4613	7416	5663	4172
$1930-1964$	4843	7330	5218	4047
$1840-1989$	4847	7272	5535	4171
DQ max	0.0	2.0	2.3	0.0
DQ min	-8.0	-5.7	-5.3	-2.5

Закључак: Када су у питању репрезентативни хидролошки низови за југосповенски део Дунава и друге веће реке, за изучавање режима реке неопходно је узети низове од најмање 25 година ако се анализнрају годишње вредности отицања, 35 година за сезонска отнцања, а око 50 година за месечне протицаје. За све ове вредности могуће је нзабрати н. краће периоде, апи је њихову цикличност потребно проверити са станицом која нма дуги низ осматрања.

Честина појављивања сушних и водних година

Ако се средњегодишњи протицаји из табеле 1. изразе статистички по класама од по $\mathrm{Q}=500 \mathrm{~m}^{3} / \mathrm{s}$ за мале и средње и $\mathrm{Q}=1000 \mathrm{~m}^{3} / \mathrm{s}$ за велике воде и њихов број упореди са укупним бројем осмотрених узорака (150 година.), добија се слика честине појављивања карактеристичних протицаја, која је приказана у табели 6. У погледу средњегодишњег

протицаја може се рећи да су најчешћи у класи од 4500-5000 $\mathrm{m}^{3} / \mathrm{s}$, укупно 35 случајева нли 23.3%, затнм од $5000-5500 \mathrm{~m}^{3}$, s , са 29 појављених година (19.3%), од $5500-6000 \mathrm{~m}^{3} / \mathrm{s} 25$ случајева (16.7%), и од $6000-6500 \mathrm{~m}^{3} / \mathrm{s} 20$ појава (13.0%). Најмани број година је са протицајем у класи $7500-8000 \mathrm{~m}^{3} / \mathrm{s}$, јмяаи случај и 8000-8500 $\mathrm{m}^{3} / \mathrm{s}$ два случаја. Среднегоциииии иротицајн нспоц $4500 \mathrm{~m}^{3} / \mathrm{s}$ су најчешћи у класн од $4000-4.500$ $\mathrm{m}^{3} / \mathrm{s}(8.7 \%), 3500-4000 \mathrm{~m}^{3} / \mathrm{s}(3.3 \%)$, а најређи у кааси оц $3000-3500 \mathrm{~m}^{3} / \mathrm{s}$. Из овога се може извући један опити закл, учак да средњегодишњн протицаји најчешће варирају око средне вишегодншње вредности, укупно је таквих 54 гощнне а одатле оне опадају ндући ка внишм и нижим вредностима.

Таб. 6. - Честина појавьивања средних годишних, минималних и максималних протицаја Дунава у Бердапу (1840-1989).
Tab. 6. - Frequency of apearing mean annual, minimal and maximal discharge of the Danube in Derdap (1840-1989)

Средњи класа	годишњи		Минималн класа	и протицаји		Максимални протицаји		
	број			број	\%	класа	број	\%
3000-3500	$0 \quad 1$	0.67	1000-1500	13	8.67	5000-6000	2	1.33
3500-4000	5	3.33	1500-2000	41	27.30	6000-7000	5	3.33
4000-4500	13	8.67	2000-2500	54	36.00	7000-8000	18	12.00
4500-5000	35	23.30	2500-3000	28	18.70	8000-9000	27	18.00
5000-5500	- 29	19.30	3000-3500	8	5.33	9000-10000	29	19.30
5500-6000	- 25	16.70	3500-4000	4	2.67	10000-11000	23	15.30
6000-6500	20	13.30	4000-4500	2	1.33	11000-12000	17	11.30
6500-7000	11	7.33				12000-13000	10	6.67
7000-7500	8	5.33				13000-14000	8	5.33
7500-8000	1	0.67				14000-15000	7	4.67
8000-8500	2	1.33				15000-16000	4	2.67
Сума	150	100.00		150	100.00		150	100.00

IIто се пак тиче минималннх протицаја везаних за један дан у години важи правнло да и они најчения варирају у класи око средње годишњег минимапног протииаја, то јест од $2000-2500 \mathrm{~m}^{3} / \mathrm{s}$, са 54 појаве (36.0%), н о.t $1500-2000$ $\mathrm{m}^{3} / \mathrm{s}, 41$ случај (27.3\%). Мннимални протицаји ређе учестаиости су од $1000-1500 \mathrm{~m}^{3} / \mathrm{s}$ са 13 појава (8.7%), затим оп $2500-3000 \mathrm{~m}^{3} / \mathrm{s}$ са 28 година (18.7%), од $3000-3500 \mathrm{~m}^{3} / \mathrm{s}$, 8 (5.3%) појава, а најређи су у класи од $4000-4500 \mathrm{~m}^{3} / \mathrm{s}$ са 几ве појаве.

Међутим, макснмални годиини протицаји пмају много веће варнјацнје и амплнтуде, јављају се у границама од $5000-16000 \mathrm{~m}^{3} / \mathrm{s}$. Најучесталији максимални иротицаји су у класи од $9000-10000 \mathrm{~m}^{3} / \mathrm{s}$, са 29 појава или 19.3% і ол $8000-9000 \mathrm{~m}^{3} / \mathrm{s}$ са 27 појава (18.0%). Вишпи и нижи максималини протнцаји су нормално ређе појаве, али већу заступљеност имају протицаји у класн од $7000-8000 \mathrm{~m}^{3} / \mathrm{s}$ (18 случајева), и $10-11000 \mathrm{~m}^{3} / \mathrm{s}$ (23), $11-12000 \mathrm{~m}^{3} / \mathrm{s}$ (17), оД, $12-13000 \mathrm{~m}^{3} / \mathrm{s} \quad$ (10). Протицајю су најређи у класи оц $5000-6000 \mathrm{~m}^{3} / \mathrm{s}$ (2) н $15-16000 \mathrm{~m}^{3} / \mathrm{s}$ (4). Као што се видн, амплитуде појављнвања средних, миннмланих н максималних годиињих вода се битно разликују, највеће су код макснмапних вода, којн се могу кретати, као ито је већ речено од $5000-16000 \mathrm{~m}^{3} / \mathrm{s}$, затим среднегодишннх од $3000-8500 \mathrm{~m}^{3} / \mathrm{s}$, н коначно мннималннх, чије вредности варирају у границама од $1000-4500 \mathrm{~m}^{3} / \mathrm{s}$.

Aпсопутно минимапне воде на Дунаву у сектору Бердапске клисуре су се појавиле у проилом веку, па је најмањи протицај од $1150 \mathrm{~m}^{3} / \mathrm{s}$ осмотрен 1866 године, затим по редоследу појавливања занимливи су следећи минимални протицаји: 1190 (1858 , 1902. године), 1220 (1893. године), 1250 (1954. године), 1290 (1864. године), 1310 (1901. године), 1330 (1947. годнне), 1350 (1862. године), 1370 (1933, 1953. године), и $1460 \mathrm{~m}^{3} / \mathrm{s}$ (1909. годмне). Најучесталије мале воде биле су трећем по реду квартапу ннструменталног периода 1890-1914. година, када је среднегодишне Q минимално $2010 \mathrm{~m}^{3} / \mathrm{s}$. У том периоду забележено је 13 година са минималннм годишњим протицајем пспод $2000 \mathrm{~m}^{3} / \mathrm{s}$. Насупрот томе, повишени минимапни протицаји су бпли у последњем 25-годиинем периоду проучаваног низа, то јест од 1965-1989. године када је средњегодишње Q минимално највеће, $24.10 \mathrm{~m}^{3} / \mathrm{s}$. У том периоду, само је 5 година имало протицаје мање од $2000 \mathrm{~m}^{3} / \mathrm{s}$.

Апсопутно макспмалне воде су се такође појавиле у прошлом веку. Апсолутно највећи протицаји од $15900 \mathrm{~m}^{3} / \mathrm{s}$, осмотрени је 17. 04. 1895. године; за ьим по редоследу појављивања слепе $15500 \mathrm{~m}^{3} / \mathrm{s}$ (14. 04. 1888. године), 15400 (7. 06. 1897. године), 15100 (13. 04. 1940. године), 14800 (27. 03. 1981. године), 14700 (25. 06. 1943. године), 14310 (29. 05. 1970. године), 14200 (9. 04. 1924. године), 14100 (1. 04. 1876. године) 14000 $\mathrm{m}^{3} / \mathrm{s}$ (1845, 1919. године). Ако се издвоје протицаји $Q \max >10000 \mathrm{~m}^{3} / \mathrm{s}$, онда је њих било у проучаваном пиериду 69, са просечном појавом сваке друге године. Најучесталије максималне воде ($>10000 \mathrm{~m}^{3} / \mathrm{s}$) биле су од 1965-1989. rодине (15 годнна), п перноду 1915-1939. година са 14 осмотрених

година. Највећи број година са великим водама мањнм од $10000 \mathrm{~m}^{3} / \mathrm{s}$ је бно у првом кварталу 150 -тогодншнег периода (1840-1865. година) са 19 појављених година.

Вероватне мале и вепике воде су у већини спучајева потврђене са осмотреним. Стогодишна мала вода се појавила у 1858. и 1902. години са вредношћу од $1100 \mathrm{~m}^{3} / \mathrm{s}$, док су двадесетогодишње и 50-тогодишње између 1200-1350 $\mathrm{m}^{3} / \mathrm{s}$. Вероватне максималне воде ређе учесталости појава су се на Дунаву појавнле. До сада највећа осмотрена вода је око $16000 \mathrm{~m}^{3} / \mathrm{s}$, која се према подацима из табеле 7 налази између 100-годишње и 1000-годишне велине воде; 10-годинне и 50-годишње велике воде су у границама између 13500-15250 $\mathrm{m}^{3} / \mathrm{s}$. Таквнх вода у 150 -годишњем периоду је било у више година.

Таб. 7. - Вероватноћа малих н велнних вода на
Дунаву у Бердапу ($n=150$)
Tab. 7. - Probability of lower and higher water on the Danube in Derdap ($n=150$)

| Година јављана | 10 год. | 20 | год. | 50 | год. | 100 | год. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | 1000 год.

Најводније године по средњегодинњем протицају cy 1915. $\left(8050 \mathrm{~m}^{3} / \mathrm{s}\right)$, $1970 .\left(8000 \mathrm{~m}^{3} / \mathrm{s}\right)$, 1941. $\left(7900 \mathrm{~m}^{3} / \mathrm{s}\right), 1937$. ($7440 \mathrm{~m}^{3} / \mathrm{s}$), 1965 . ($7440 \mathrm{~m}^{3} / \mathrm{s}$), 1940 . ($7390 \mathrm{~m}^{3} / \mathrm{s}$), 1926. (7220 $\mathrm{m}^{3} / \mathrm{s}$), а најсушннје 1863. ($3340 \mathrm{~m}^{3} / \mathrm{s}$), 1921. ($3680 \mathrm{~m}^{3} / \mathrm{s}$), 1866. $\left(3700 \mathrm{~m}^{3} / \mathrm{s}\right)$, 1943. $\left(3810 \mathrm{~m}^{3} / \mathrm{s}\right)$, 1894. ($3960 \mathrm{~m}^{3} / \mathrm{s}$), 1949. (3980 $\left.\mathrm{m}^{3} / \mathrm{s}\right), 1908 .\left(4110 \mathrm{~m}^{3} / \mathrm{s}\right), 1918,1947 .\left(4130 \mathrm{~m}^{3} / \mathrm{s}\right)$.

Најчешћи датуми појавливања минималних годишњих вода на Дунаву су у октобру, септембру и новембру а веома ретко у зиму, док се практично миннмалне воде не јављају у пролеће и у рано лето. Друга декада октобра је означена као период са најчешћом појавом малих вода. Насупрот томе, честина појављивања максималних протицаја је далеко највећа у апрнлу и мају, укупно 78 случајева (50%), затим следе март (19) и јуни (16). Најмања учесталост великих вода је у јесен и зиму. Друга декада априла и маја су периоди са највећом честином великих вода, односно то су перноди када можемо очекивати најчешће поплаве чије трајање у максимуму може да буде и до тридесет дана.

Честина појаидиванй средие месеиних протнцаја

Распоред отицања унутар гоцние на Дунаву се разликује од других река. Највећи протицајп су у пролеће и почетком лета. У овоме заначајан удео има снежница са Алпа п других пианина која храни Дунав све до јуна месеца (таб. 8.). Као последица тога, варијације месечних протицаја су мале, коефицијенти варијација се крећу од 0.19-0.35, највећи су зиму или јесен, а најмани у пролеће н лето. Дакле, онн стоје у супротном односу према отицањнма која су највећа у априлу, мају и јуну, а најмања у октобру, септембру и августу. Специфнчна изпаиност слива Дунава је велика. Просечна годишња вредност је $9.47 \mathrm{1} / \mathrm{s} / \mathrm{km}^{2}$, а по месецима је највећа у апрнлу $13.4 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$, а најмана у октобру $6.8 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$.

Таб. 8. - Средье месечни и годишви протицаји на Дунаву у периоду 1840-1989. (Бердап)
Tab. 8. - Mean monthly and yearly discharge of the Danube in the period 1840-1989. (Derdap)

Месец	I	II	III	IV	V	VI	VII VIII	IX	X	XI	XII

$\begin{array}{llllllllllllll}\text { Qs } & 4608 & 4142 & 6458 & 7740 & 7617 & 6604 & 5529 & 4417 & 3923 & 3919 & 4668 & 4993 & 5456 \\ \mathrm{Cv} & 0.37 & 0.31 & 0.28 & 0.30 & 0.30 & 0.28 & 0.28 & 0.30 & 0.35 & 0.39 & 0.38 & 0.36 & 0.19\end{array}$ $\begin{array}{llllllllllllll}\text { Cv } & 0.37 & 0.31 & 0.28 & 0.30 & 0.30 & 0.28 & 0.28 & 0.30 & 0.35 & 0.39 & 0.38 & 0.36 & 0.19 \\ \sigma & 1705 & 1532 & 1808 & 2322 & 2285 & 1850 & 1548 & 1341 & 1373 & 1528 & 1774 & 1800 & 1037\end{array}$

Qs-средње годишњи протицај ($\mathrm{m}^{3} / \mathrm{s}$), Сv-коефицијент варијације, σ-стандардна девијација ($\mathrm{m}^{3} / \mathrm{s}$)

Честина појавливања средње месечних протицаја условљена је режимом Дунава, односно распоредом падавина и утицајем физичкогеографскнх фактора слива. Нормално је очекивати њихову највећу честину око просечних месечних вредности, мада амплитуде између просека и највеће односно најмање средњемесечне вредности могу да буду велике. Оне су значајне ако се праве планови коришћења вода по сезонама, па осим научног имају велики практични значај. У табели 9. су највећи и најмањн средњемесечни протицаји у 150-годишњем периоду са разликом у односу на месечни просек.

Као што подаци показују, највећи средње месечни протицаји су увек већп од $10000 \mathrm{~m}^{3} / \mathrm{s}$ од јануара до септем бра и могу да достигну вредност близу $14000 \mathrm{~m}^{3} / \mathrm{s}$. у сушнијем периоду (јесен) те вредности су испод $10000 \mathrm{~m}^{3} / \mathrm{s}$, али

су изнад $7000 \mathrm{~m}^{3} / \mathrm{s}$. Њихове величине се битно разпикују од вниегодинњьег просека и нысу мане од $4000 \mathrm{~m}^{3} / \mathrm{s}$. Te разлике се креһу у првој половнни године око годииьег просека, у пето прелазе 6000 нли $7000 \mathrm{~m}^{3} / \mathrm{s}$, да би у јесеп пале испод $5000 \mathrm{~m}^{3} / \mathrm{s}$

Таб. 9. - Највећи и најмани средне месечни протииаји и вихово одстynaне од nросека у nepuody 1840-1989.
Tab. 9. - The largest and smallest mean monthly discharges and their deviation of average in the period of 1840-1989.

| Meceц | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mes max | 10150 | 10020 | 11600 | 13700 | 13300 | 13700 | 12400 | 10510 | 7900 | 7950 | 9940 | 10800 |
| DQ | 5542 | 5078 | 5142 | 5960 | 5683 | 7096 | 6871 | 6039 | 3977 | 4031 | 5272 | 5807 |
| Mes min | 1470 | 1370 | 2830 | 3860 | 4280 | 3450 | 3000 | 2270 | 1870 | 1500 | 1880 | 1780 |
| DQ | -3138 | -3572 | -3628 | -3880 | -3337 | -3154 | -2529 | -2201 | -2053 | $-2419-2788$ | -3213 | |

$D Q$-одступање од вишегодишњег просека

Минималне вредности срецњемесечних протицаја су у шест месеци испод $2000 \mathrm{~m}^{3} / \mathrm{s}$, а у пролеће п лето изнад $3000 \mathrm{~m}^{3} / \mathrm{s}$. Оне су нормално, увек ниже, од просечннх месечних протицаја, па су одступана означена негативннм предзнаком. Највеће разлике су у пролеће, зиму и лето.

Што се тиче честине појавливања средње месечних протицаја, нпр. по одређеним класама, важи правило што је речено за годишње протицаје, да се различито понашају од месеца до месеца. Код влажнијих месеци варирају око неке средње вредности, а у сушним месецима нема такве законитости. Честина месечних протицаја подједнако је заступљена по класама. У овом одельку овакве анализе су урађене за најводнијн месец апрнл ($\mathrm{Q}=7740 \mathrm{~m}^{3} / \mathrm{s}$) и најсувльи октобар $\left(\mathrm{Q}=3919 \mathrm{~m}^{3} / \mathrm{s}\right)$. Усвајајући класу протицаја од по $1000 \mathrm{~m}^{3} / \mathrm{s}$ за април, анапиза је показала да су најучесталији протицаји од $7000-8000 \mathrm{~m}^{3} / \mathrm{s}$ (29 случајева), затим $8000-9000 \mathrm{~m}^{3} / \mathrm{s}$ (26) и 6000-7000 $\mathrm{m}^{3} / \mathrm{s}$ (25). Изнад и нспод ових вредности постоји симетрија у погледу појављивања карактеристичних протицаја, честина је најмања у класи од $13-14000 \mathrm{~m}^{3} / \mathrm{s}$ само 4 појаве и од $3000-4000 \mathrm{~m}^{3} / \mathrm{s}$, такође са 4 појаве.

У најсувљем октобру, најучесталији протицаји су у кпаси од $4000-5000 \mathrm{~m}^{3} / \mathrm{s}$ (23) п од $3500-4000 \mathrm{~m}^{3} / \mathrm{s}$ (21). И у цругим класама је слична заступљеност рангираних протицаја,

нпр. од $2000-2500 \mathrm{~m}^{3} / \mathrm{s}(20$ појава), нз чега произнлази да је трајање малих вода знатно дуже од велиних, мада то више зависн од водности године (водна, сушна).

Класнфннација година но водиости

Дугогодниња осматрања на Дунаву омогућнла су да се статистнчком анализом класификују године по карактеру њихове водности. Тако су уз године средне водности, сушну н водну, уведени још појмови веома сушна, веома водна, катастрофално сушна и катастрофално водна. У хидролошкој пракси још увек нису рашчишћени појмови како дефиннсати године одговарајуће водности, односно како за такву годнну утврдити праг и граннцу када она настаје н престаје. Нису ни дефиннсане методе како извршити поделу година по водности. Зна се нпр. да је просечна вншегодишња вода обезбеђености 50%, водна година 25%, сушна 75%. Међутим, за сваку од овнх вредности добија се само једна величина протицаја, а познато је да серије низова нмају своју расподелу, групншу се око неке средње вредности, па тако сви протицаји нижи и виши од 50%-не воде могу да буду означени у извесним границама као просечни са толерантним одступањима од вншегодишње вредности. Проблем рангнрана година по водности донекле је размотрен у литератури [Лучшева A. A. 1976.], где су појмови тако дефинисаних година слични појмовима уведених у овом раду. Према истој литератури, катастрофално водна година је обезбеђености $0,01 \%$ и $0,1 \%$,веома водна 1%, водна 3%, средње водна 50%. Међутнм, у оквиру ове градације, између појма водна и средње водна уведена је и средње многоводна година са процентом јављања од 10%. Како није довољно јасно ита је то "средне многоводна година", у нашем раду смо се определили да један део тих година буде у средње водној, а други у водној години. Такође, исто то важи и за сушне године, где је аналогно великим водама уведена и средне маловодна година са процентом јављања од 4\%. И у овом случају поступљено је слично као код средње многоводне године. У оваквој класификацији хидролошких година није дат праг преласка између једне у другу водност, па то представља основну тешкоћу у деоби година по њиховој водности, што у наведеној литератури није учињено.

Основни критеријуми за класнфикацију година но водности. - Користећи расподелу Pearson III, све годишње протицаје Дунава у Ђердапу нзразили смо помоћу крнве вероватноће (скица 3). Она је дефинисана са раније датим параме-

трима, средњом арнтметником вредноиһу ($54.56 \mathrm{~m}^{3} / \mathrm{s}$), коефицијентом варијације, $\mathrm{Cv}=0,17$ и коефицијентом асиметрије криве расподеле $\mathrm{Cs}=0,47$. Најболим нзбором Cs , потврђено је правилно групнсање тачака око теориске криве вероватноће, са обухваћеном амплитудом од најманнх до највећих вредности, што је бнло могуће с обзнром на дужину осмотреног периоца.

Као критеријум за рангнрање година по водности усвојено је да све године средне водности буду у границама од $25-75 \%$, сушне (маловодне) од $75,1-95 \%$, веома супне од 95,1-99\% и катастрофално супине од $99,1-99,9 \%$. Градација влаж них година ишла бн сличним редом, тј. водиа година била би означена у процентима појавливана од $25,0-5,1 \%$, веома водиа од $5,0-1,1 \%$ и катастрофалио водна од $1,0-0,01 \%$. На скици 3. означена су поља карактеристичних година у растућем и опадајућем низу у односу на винегодишњн протицај. Као што се види, највећа заступленост мереннх тачака је у домену средњих вода, а затнм тај број опада ка апсолутно највишим н најннжим вредностима. Види се да су катастрофално водне и катастрофално сушне године ретке учесталости појава, просечно једном у 100 и више година. Ако бројке вероватноће преведемо у стварне вредности протнцаја, онда су средње године по водности са протицајем од $4751-6000 \mathrm{~m}^{3} / \mathrm{s}$, сушне од $4000-4751 \mathrm{~m}^{3} / \mathrm{s}$, веома сушне од $3500-4001 \mathrm{~m}^{3} / \mathrm{s}$, а све године са средяе годинњнм протицајем мањим од 3500 $\mathrm{m}^{3} / \mathrm{s}$ су катастрофално суине године. У растућем смислу, године које су са Qs од $6001-7000 \mathrm{~m}^{3} / \mathrm{s}$ су водне, од $7001-8000 \mathrm{~m}^{3} / \mathrm{s}$ веома водне іи изнад $8000 \mathrm{~m}^{3} / \mathrm{s}$ катастрофално водне. Као што се внди у овој подели, која је прнлагођена овом раду може да буде спорно и донекле дискутабилно то што је праг прелаза из једне у другу водност само један метар кубни воде. У оваквој ситуацији, може се увести и допунска класификација, увођењем ткз. прелазних година између две водне градације, нпр. да нека година буде означ ена као прелазна између сушне у веома сушну, или између средъе водне у водну годину.

Ако се класе протицаја за карактеристичну воцност нзразе у односу на 150 -годишњи просек ($5456 \mathrm{~m}^{3} / \mathrm{s}$)., онда би катастрофално сушна годнна одступала за 36%, веома сушна од $26,7-36 \%$, сушне од $13-26 \%$. Године средне водности одступале би за $10-13 \%$, водне године за $13,1-28,3 \%$, веома водне од $28,4-46,6 \%$, а катастрофално водне за више од 47%.

Рангирање годнна по водности Дунава у Бердапу. - Применујући изнети критеријум на средње годишње протицаје Дунава, према подацима из таб. 1, добијена је статистика појављивања година по карактеристичној водности (таб. 10).

Вндимо да је највећи број појава средње водних гоцина, укупно 74 , што је приближно 50% оц свих обрађених узорака (150), затим је заступљена симетричност кои суиних н водних годнна у прнближно нстом односу (29:30), слично као код катастрофапно сушних и катастрофално водних гоцнна (по један случај). Једино се појавлује разлика између веома сушних (5) н веома водннх година (10). Међутим, како су после 1989. гоцине наступнле сушне гопине, може се очекивати да he ускоро п тај услов бити испуњен. Нпр. срецне годишни протицаји Дунава у Кладову је у 1990. години $\mathrm{Qs}=3778 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{y}$ 1991. $\mathrm{Qs}=4836 \mathrm{~m}^{3} / \mathrm{s}$ н 1992. године $\mathrm{Qs}=4684$ $\mathrm{m}^{3} / \mathrm{s}$. Ако ове године рангирамо помоћу графнкона са скице 3. и таб. 10, 1990. је веома суина, 1991. је прелазна између средње водне и сушне, а 1992. је сушна година. Као што се види, после 1989. године наступио је период сушнијих година, па је број од 29 раније појављених сушних повећан на 31, а веома сушних на 6

Хидролоика класпфикација година по водностн има велики практнчни значај у решавању бројних водопривредних проблема, па је ьу потребно практиковати при изучавању режима река. Она може бити путоказ у прогнозирану појављивања сушних н влажних периода у једном дужем временском раздоблу, што је са аспекта кориићена вода веома значајно. Она би могла ца буде примењивана и за друге реке сличног режима Дунаву; међутим, спорно је, да ли она може да се односи на мане реке са другнм режнмима, јер се сушне и воцне гоцине не морају појављивати истовремено на свим рекама једног ширег региона. Наравно у томе се још нема искустава, па би овакве анализе требало наставити и за мање речне сливове на којима постоје дугогоцишња осматрања. Сигурно је да ће се у томе различито понашати реке у чисто нивалном пли плувнјалном, односно у плувно-нивалном и нивално-плувијалном режиму.

Анализа годниа но карактеру нихове водности.
Анализирајући податке пз таб.1, запажамо да су се псториске водне и сушне године појавиле на Дунаву у прошлом и овом веку, то су катастрофално сушна 1863. година са протицајем мањим од $3500 \mathrm{~m}^{3} / \mathrm{s}$ п катастрофално водна 1915. година са средње годишњим протицајем већим од $8000 \mathrm{~m}^{3} / \mathrm{s}$. У веома сушне године спацају $1866,1894,1921,1943$ п 1949. Веома водне су: 1853, 1879, 1919, 1926, 1937, 1940, 1941, 1955, 1965. н 1970.

година. Дакле, нема неке правилне хронологије у појавлнвану веома сушних и веома водних година, па се за ннх може рећи да су то случајне појаве.

Таб. 10. - Parıиране ъодина по водности Дунава у Бердапу за поспедъих 150 година (1840-1989).
Tab. 10. - A ranking years in the watery of the Danube in Derdap for latest one hundred and fifty years (1840-1989)

Водност године	Протицај	Г ○ д и н е	Број годин	\% јава љања
Катастрофално сушне	< 3500	1863	1	99.1-99.9
Веома сушне	3500-4000	1866, 1894, 1921, 1943, 1949	5	95.1-99
Сушне године	4001-4750	$\begin{aligned} & 1842,1854,1856,1857,1858,1862,1865, \\ & 1869,1873,1874,1887,1890,1891,1898, \\ & 1904,1908,1909,1911,1918,1928,1929, \\ & 1934,1946,1947,1950,1961,1971,1973 \\ & 1983 \end{aligned}$	29	75.1-95
Средње водне године	4751-6000	1840, 1841, 1843, 1846, 1848, 1849, 1852, 1859, 1861, 1864, 1867, 1868, 1872, 1875, 1877, 1880, 1882, 1883, 1884, 1885, 1886, $1888,1889,1892,1893,1896,1899,1901$, 1902, 1903, 1905, 1906, 1907, 1913, 1917, 1920, 1922, 1923, 1925, 1927, 1930, 1931, 1932, 1933, 1935, 1936, 1938, 1939, 1945, 1948, 1951, 1952, 1953, 1954, 1956, 1957, 1958, 1959, 1960, 1962, 1963, 1964, 1968, 1969, 1972, 1976, 1978, 1982, 1984, 1985, 1986, 1987, 1988, 1989.	74	25.1-75
Водне године	6001-7000	$\begin{aligned} & 1844,1845,1847,1850,1851,1855,1860, \\ & 1870,1871,1876,1878,1881,1895,1897, \\ & 1900.1910,1912,1914,1916,1924,1942, \\ & 1944,1966,1967,1974,1975,1977,1979, \\ & 1980,1981, \end{aligned}$, 30	25-5.1
Веома водне	7001-8000	$\begin{aligned} & 1853,1879,1919,1926,1937,1940,1941, \\ & 1955,1965,1970 . \end{aligned}$	10	5-1.1
Катастрофално водне	> 8000	1915	1	1-0.01

Слична је ситуација и са сушним и водним годинама, само ито је њихова честина појавливања знатно већа. И сушне и водне године се јављају у размаку од. $4-20$ година, док се средне водне јављају сваке цруге године. Aко упоредимо честину појавливања година у прошлом и овом веку, уочавамо донекле њихову синхрозниованост, нир. у проилом веку је била катастрофално сушна, у овом катастрофално водна, веома сушне године су такође бипе правипно распоређене, две у проилом, три у овом столећу, док то не важи за веома водне године. Њнхова појава је знатно веһа у XX веку са 8 од могућих 10 случајева. И сушне и водне године имају правилан распоред, подједнак број појава у прошлом (15) и овом веку (15). За године средње водности оваква заступљеност је нешто другчија, 27 година у XIX н 47 у XX веку, што је свакако послецица неједнаке дужине осмотрених периода, у прошлом веку 60 н у овом 90 година.

Цнкличност отицања и Супчеве пеге

Према истраживањима утицаја сунчеве активности на метеоролошке и хидролошке процесе на Земпн, данас у свету постоје опречна мишлења, а и подаци о тнм истраж иванима су оскупна. Јои увек се не располаже са меродавним и верификованим подацима, да пи Суниеве пеге нмају неке активности у генезн суиних и водних пернода на Зем љи. Зна се да се сунчеве пеге јавььауу просечно сваке 11-те године. У пнструменталном периоду од 1749. године од када ce oне осматрају до 1978. годнне [Rhodes W. F, 1967] је било око 20 цикдуса сунчевих пега, од којих је сваюи имао свој макснмум и минимум, са највећом интезивношћу у пернодима око 1780 , $1840,1870,1950$, и 1960. гоцнне (скица 4).

Поређењем цикличних влажних и суиних периода на Дунаву са циклусима сунчеве активности, може се рећи да скоро нема неке завнсности у томе, јер се и влажни и сушни периоци јављају и у доба минимума и у поба максимума сунчевих пега, и у вези тога се не могу извући одређ ени заклучци. Као што је раније речено, сваки циклус карактеришу прелазне године (из сушнијег у влажнији и обрнуто), то су према скици 2. годнне 1853, 1875, 1881, 1909, 1935, 1942, 1964, п 1982. Према броју сунчевих пега до 1978. п доцније [Гавриповић Љ. 1981] у тим годинама мли око њих забележен је минимум сунчевих пега, или сваком периоду прелаза из једне у пругу водност предходи макспмум сунчеве активности. Међутим, дужнна трајања хидролошких сушних и влажних периода такође нема чврсту корелативну

зависност са трајания сунчеве активности, јер сунчеви циклуси трају просеяно око 11 годима, а хииролоиини могу ца трају од 16-45 година. Једина хронологија у погледу цикличности влажних пернота јесте ито се, према поданима за писледних 80 годнна, макспмапни протицаји пзнац $10000 \mathrm{~m}^{3} / \mathrm{s}$ јавлају у просеку сваке седме године. Последюа је бина 1988. ($\mathrm{Qmax}=12.700 \mathrm{~m}^{3} / \mathrm{s}$), па би, слецећн овај континунтет, наредни слични максимум могао да се појавн у 1995. и 2002-ој гоцини. Али, судећп по броју појавмених макснмума унутар сваког таквог седмогодиинег пернода, није искдучено да се велике воде појаве између ових година. Према томе, и овде важи правило да су макснмалне воде као и друге хидролонке појаве случајни процеси, немају неку хронологију међусобне зависностн са цругим природним појавама на Земпи, као ито је случај са сунчевом активношћу, која се, према цосадашњнм истраживанима јавља у одређеним временским интервалима.

Ск. 4. - Cpeдヶе годишни број Сунневих пега од 1749-1980
Fig. 4. - Mean añnual number of sunspot from 1749-1980.

Прогноза појавнивана сунних и воцинх

 периоца на ДунавуИ ако је незахвално цавати све врсте прогноза о промени бнпо којег природног елемента на Земпн, на и о промени карактеристика отицана, посейно ако се раци о дуж нм временским пнтервалима какве су управо цикличие појаве, ппак у овм поглавлу осврнућемо се и на овај пробпем, корнстећи се пре свега аналогнјама појавлнвана циктннних временских серија обрађеннх у прецходнни ноглавннма. Према подацима са скице 2, извесно је ца је период 1964-1982. био влажнији од предходног суиннјег за 18%. Следеһи дальи ток кретана цикличних појава на Дунаву после 1982. гоцнне каца је завршен један воднији пернод последнег IV цнклуса, узпмајућп и године до 1992., могло бн се рећи па настаје јецан дужи сушнији пернод који te вероватно трајати до краја десете деценнје овог и бити пренет у прву пецениу нарецнол века, са средним протнцајем ција ои вредност била нижа за 15% од препходног. Прогнознра се ца бн просеини протицај наступајућег суинијег периоца V пиклуса бно око $5000 \mathrm{~m}^{3} / \mathrm{s}$ са дужином трајања од око 20 гоцнна. У нему би, као н у свнм предходним цнклусима бнла могућа појава јецног влаж нијег мнкроциклуса са 2-3 влажне или веома влажне године. Следећи V циклус ммао би знатно више сушних него влаж иих годнна. Нису искльчцне и веома суине године са срецне годишњим протнцајем пспод $4000 \mathrm{~m}^{3} / \mathrm{s}$, јер је поспедна таква година бниа 1949, док је последња суина бнла 1983. годнна са Qs мањим од $4750 \mathrm{~m}^{3} / \mathrm{s}$. Поспедна веома водна је 1970, а водна 1981. година. Ммајући у внду да је у нериоду 1983-1992. година већ бнло 6 средње водних, а следећи аналогију смене година по водности у ранијнм периодима, може се очекнвати чешћа појава сушних година са пеком нзузетно суином, иии би убрзо могао да буде пзједначен оцнос у попледу броја појављених веома сушних, којих је у обрађиваном периоду било 5, према веома водннм, којих је било 10 (таб. 10). Поспе 1989. гоцине осматрана су потврдила ову прецпоставку, јер је 1990. била веома сушна, 1992. сунна, а 1991. прелазна нзмеђу сушне и средњье водне године.

Што се пак тиче макснмапних н миннмалних вода, строго узев, законитост ниховог појавливана није везана за цикличне појаве, већ су то случајни процесн. Aко се узме доња граница великих вода од $10.000 \mathrm{~m}^{3} / \mathrm{s}$, онда је таквнх протицаја у осмотреном перноду бнло 69, са просечном појавом сваке друге године. Међутим, по распореду ниховог појављивања, најучесталпјп максммаини протицаји ($10.000 \mathrm{~m}^{3} / \mathrm{s}$)

су бнли у овом веку, тачније од 1912-1916, непрекидно скоро у свакој години, затим у периоду 1952-1958. и 1965-1982, такође скоро у свакој години. ઔзузетно, макснмалне воде , нпр. веће од $14.000 \mathrm{~m}^{3} / \mathrm{s}$ бине су равномерно распоређене у 19 и 20 веку, али и оне немају своју законитост временоког појавливања. Последња годнна са Qmax оп $14.800 \mathrm{~m}^{3} / \mathrm{s}$ је бина 1981, затим 1942. ($14.700 \mathrm{~m}^{3} / \mathrm{s}$), па тек онда 1970. ($14.310 \mathrm{~m}^{3} / \mathrm{s}$).

Минимапне воце пмају сличне осципације као и велике воде, али су оне у последних 20 гоцина у нешто измењеном режиму под утицајем рада XE "Бердап". Aко посматрамо све мннималне протнцаје пспод $2000 \mathrm{~m}^{3} / \mathrm{s}$ и то до 1972. године (пре изградне бране), њихова највећа честина је у времену од 1855-1866. године, затим крајем 19 и почетком 20 века, као п у перноцу 1943-1954. Дакле, и код овнх вода не постоји законитост временскнх серија, па и за них важн правило да се јавпају од спучаја до спучаја. Минималне воде прате сушне периоде, па се за сваки прогнознрани такав период могу очекивати и године са минималним протицајем испоп $2000 \mathrm{~m}^{3} / \mathrm{s}$. Иначе, у 150-годишњем периоду укупно је забележено 54 године са Qmin мањнм од $2000 \mathrm{~m}^{3} / \mathrm{s}$. Ове воде се појављују просеино сваке треће године. Чешће се цогађа да мннимални протицаји у неким годинама буду већи оц средне годишњих вода цругнх веома сушних година. Нпр. 1845. гоцпна је са $\operatorname{Qmin}=4100 \mathrm{~m}^{3} / \mathrm{s}$, 1915. ($4130 \mathrm{~m}^{3} / \mathrm{s}$), 1955. (3930 $\mathrm{m}^{3} / \mathrm{s}$, 1960. ($3590 \mathrm{~m}^{3} / \mathrm{s}$), чије су вредности веће оп срепње гоциињих протицаја 1863. ($3340 \mathrm{~m}^{3} / \mathrm{s}$), 1866. ($3700 \mathrm{~m}^{3} / \mathrm{s}$), 1921. $\left(3680 \mathrm{~m}^{3} / \mathrm{s}\right)$, итд.

ЧЕСТИНА ПОЈАВЉИВАЊА ДЕКАДНИХ ПРОТИЦАЈА НА САВИ И МОГУКНОСТИ ЊИХОВОГ ПРОГНОЗИРАЊА

У одељку овог рада проучен је режим, честина и трајање декапних протицаја на р. Сави у Сремској Митровици у периоду 1926-1970. година [Оцокољп立 М. 1972] . Издвојени су периоди са појавом карактеристичних декдадних протицаја опређене учестапости, времена појављивања са освртом на прогнозирање средње декадних протнцаја применом аутокорелационих модела. Средне цекацни протицаји Саве прате месечне протицаје, највећи су у пролеће, тачније у 10, 11, 12 декадн године, а најмањн у дето и јесен, са најмањом вредношћу од 23-26 декаде (таб̆. 11).

Таб. 11. - Средье декадни протицаји Саве код Сремске Митровиче (1926-1970).
Tab. 11. - Mean decades discharge of the Sava in Sremska Mitrovica (1926-1970).

| Декада | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Q | 2070 | 1820 | 1670 | 1740 | 1950 | 2040 | 2370 | 2390 | 2370 | 2590 | 2500 | 2540 |
| Декада | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| Q | 2370 | 2240 | 1970 | 1710 | 1500 | 1540 | 1190 | 1020 | 828 | 696 | 634 | 670 |
| Декада | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| Q | 670 | 632 | 712 | 860 | 1050 | 1170 | 1640 | 1930 | 2160 | 1960 | 2040 | 2080 |

У односу на месечне протицаје, пекадни више варирају, вине су променливи, са највећим коефицијентима варијације у јесен када је он већн од 0,50 . У знмскнм н пролећннм декацама, коефпцијенти варијације су мани оц 0,50. Другим речима, највећим вредностима протицаја одговарају најмани коефнцијентн варнјације, н обрнуто, најманим протнцајима одговарају највећи коефицијенти варијације. У односу на просечну вредност, декацни протицајн имају ману променпивост. Она је најбоље псказана помоћу стандардне девијације, која је насупрот коефицијентима варијације највећа у пролеће и почетком пета, прати највеће протицаје, пок је најмања у лето и јесен, када су и протнцаји најмањи (скица 5). Протицаји највеће учесталости су нир. у 6 декади у класи од $1800-1900 \mathrm{~m}^{3} / \mathrm{s}$, у 17 od $600-700 \mathrm{~m}^{3} / \mathrm{s}$, у 32 декади 2200-2300 $\mathrm{m}^{3} / \mathrm{s}$. Посматрајућн даље кретање пекадних протицаја, можемо извућн и неке заклучке у погледу режима трајања протицаја изнац одговарајуће граннце. Ово прво можемо спровести по месецима, пошто сваки месец чине његове три декаде. Нпр. за месец април кога чине 10, 11, и 12 декада, карактеристичнн протнцаји оцређеног трајања добнјају се нз аритметичке средине декадних протицаја, нли ако то практично извецемо помоћу графнкона са скнце 6 , онда је $\mathrm{Q} 50 \%$ (IV) $=2310$ $\mathrm{m}^{3} / \mathrm{s}$, а $\mathrm{Q} 20 \%(\mathrm{IV})=3550 \mathrm{~m}^{3} / \mathrm{s}$. Даљье, карактеристичне тачке са нстог цнјаграма омогућавају ца се конструишу криве трајања протицаја за декаде п месеце.

Познато је да се протицаји у току гоцине менају не само од месеца цо месеца, него зависе и оц годишнег доба, а осим тога, они се мењају и по амплитуди. Нпр. амппитуда протщца од $\mathrm{Q} 10 \%$ трајана је $3300 \mathrm{~m}^{3} / \mathrm{s}$, према aпсопутној која износи $5680 \mathrm{~m}^{3} / \mathrm{s}$.

Ск. 5. - Средъи декадни протицаји Саве (Сремска Митровица) у периоду 1926-1970. 2. са коефицијентоли варијације и највећоля честинолt појавぃивана

Sk. 5. - Mean decades discharge of the Sava river (Sremska Mitrovica) in the 1926-1970. period with coefficient variation and most frequency appearing

1. Декацни протицаји, 2. Коефицијенат варијације,

> 3. Честина појавливања

Датуми у којима срецњи протицаји одређеног трајања пресецају карактеристичне временске јединице може се такође одредити са скице 6. Праћење односа протицај-времетрајање има већи значај у проучавању режима река, а посебно у прогнозирању вода. Нпр. посматрајући средње декадне протицаје по времену њиховог појавливања, уочавамо ца протицај већи од $2000 \mathrm{~m}^{3} / \mathrm{s}$ траје оц 6-13 и од $33-34$ декаде у години. Изражено у временским јединицама, то је просечно годишње 10 декада или 104 дана.

Просеине цатуме у којнма протицај прелази оцређени праг у смислу неговог повеһања или сманена, може се одредити нз математнчког израза

$$
\Delta Q_{(p)}=\frac{10\left(Q_{i}-Q_{1}\right)}{Q_{2}-Q_{1}}+t_{s}
$$

у којој су ознаке $\mathrm{DQ}(\mathrm{p})$ - просечни датум настанка одређеног протицаја у порасту, Qi- протнцај за кога одређујемо просечан датум настанка, $Q 1, Q 2-$ средие декадни протицаји између којнх се налазн протицај Qi , ts- средни датум декаде, нли редни број дана у години пзмеђу Q1 и Q2. У првој декади $\mathrm{ts}=5$, у другој $\mathrm{ts}=15$, п трећој $\mathrm{ts}=25$. Ове вредности се одређују са кривих трајања протицаја.

Ск. 6. - Просенне криве трајана протицаја за три дежаде у години (река Сава - Cрелока Митровииа)
Sk. 6. - Average curves of the duration discharge in the three dekacle's in year for the Sava river (Sremska Mitrovica)

У супротном ако желимо да одреднмо просечаи датум престанка одређеног протниаја употребпавамо формулу

$$
\Delta Q_{(o)}=\frac{10\left(Q_{2}-Q_{1}\right)}{Q_{2}-Q_{1}}+t_{s}
$$

у којој су исте ознаке као у предходној једначинн. Просечно време трајана протицаја нпр. нзнад $1000,2000,3000 \mathrm{~m}^{3} / \mathrm{s}$ одређујемо нз разлике $\mathrm{DQ}(о)$ и $\mathrm{DQ}(\mathrm{p})$. Просечне датуме настанка и престанка карактеристичног протицаја, помоһу таблица претварамо у редне бројеве дана у години, нпр. 5. III је 64. дан у години, 20. IX је 263 дан у години, итд. Затим су употребом предходних израза н цијаграма крнве трајана протицаја израчунати карактеристични средњн датумн настанка одређеног протицаја са трајанем за реку Саву у профилу Сремска Митровица (таб.12), као и датумн ниховог престанка са трајањем у зимско-пролећнем и јесење-знмском перноду.

Ради бржег долажења до ових података, можемо да користнмо дијаграм са скице 5 (линија 1). Вицнмо ца протицаји већп од $2000 \mathrm{~m}^{3} / \mathrm{s}$ непрекицно трају од краја 6 цо 15 декаде, затнм оц 33 до 2 декаце (14 декада, ипи 140 дана). Или, протицаји мани од $1000 \mathrm{~m}^{3} / \mathrm{s}$ трају од 20-29 декаде а Q веће од $1500 \mathrm{~m}^{3} / \mathrm{s}$ од 18-31 декаде.

Таб. 12. - Датум појаве и престанка ъарактеристиитих протицаја на Сави код Сремске Митровиче.
Tab. 12. - A dates of appearance and end of the characteristic discharge of the Sava in Sremska Mitrovica.

Qi	зима - пролеке						$\begin{aligned} & D Q(p) \text { дан } y \\ & \text { години } \end{aligned}$		јесен			$\begin{gathered} \text { И } 1 \text { а } \\ \text { TQ } \\ \text { год. } \end{gathered}$
500	100\%	15. III	74	30.V	150	76						76
1000	80\%	23. I	23	10.VI	161	138	17. XI	321	22. I	22	66	204
1500	60\%	10. II	41	3.VI	154	113	16. XI	320	10. I	10	53	166
2000	40\%	10. II	41	29.V	149	108	11. XI	315	15.1	15	65	173
2500	20\%	5. II	36	2.VI	153	117	8.XI	312	8. I	8	61	178
3000	10\%	12. II	43	3.VI	154	111	30.X	303	18.I	18	80	191

Ознаке симбола: Qi-протицај, $Q i(t)$-трајање протицаја у декади, $D Q(p)$-датум протицаја у порасту, $D Q$ (о)- датум престанка протицаја, $T Q$-трајање протицаја

Коментар података из таб. 12 могао би да нзгледа овако: протицај оц $500 \mathrm{~m}^{3} / \mathrm{s}$ настаје 15 . III (74 дан), а престаје 30. V (150 дан); негово просеино трајане је 76 дана у години. Исти протицај се не појавлује у пето и јесен, јер су у то време мннималне воде, каца су отнцана на Сави мана оп 500 $\mathrm{m}^{3} / \mathrm{s}$. Ознака $\mathrm{Qi}(\mathrm{t})$ са бројком 100% значи да протицај од 500 $\mathrm{m}^{3} / \mathrm{s}$ траје у свнм цекадама наведеног пернода непрекндно 365 дана. Или други пример, протицај од $1000 \mathrm{~m}^{3} / \mathrm{s}$ траје у знмско-пролеһном перноду 8 пана (80%) ол могућнх 10 ; почнње 23. I а завршава се 10. VI Његово просечно трајане у првој половини године је 138 дана, или нешто више оц 3,5 месеца. У јесењо-знмској сезони, нстн протицај траје од 17. XI цо 22. I (66 цана), укупно у години 204 дана. Најмању заступљеност нмају протицаји вишнх класа, нпр. протнцај у класи оп 3000 $\mathrm{m}^{3} / \mathrm{s}$. којп је према просечној кривој трајања честине од само једног дана, повремено се појавпује од 12. II до 3. VI и од 30. X. до 18. I, са временским перподом од 191 дан у години. Као што се види, најпостојанији протицаји су нзмеђу 1000 и $3500 \mathrm{~m}^{3} / \mathrm{s}$. Из овог произилази, да велике воде на Сави могу да трају дуго, јер је река са великом површином слива, снег се отапа цо у касно пропеће, а вепике су ретензије воде у красу.

Прогноза срепие декадних протицаја

Сава спада у веће реке код које су варијације протицаја мале. На ово, осим пространства слива и његовог облика, утичу рељеф, клима и веће кранке поврии на десној страни слива и спорије топлене снега у високо-планинским областима. Зато је за Саву могуће цавати тачније и правовремене прогнозе о појави карактеристнчних протицаја (мале, средне, велике воде). За ову сврху у хидрологији се примењују познате методе и модели, нпр. кореспонденцнјом података са узводним станицама, применом методе тенденције, залиха воде у сливу. Па ипак, најлакше се прогнозирају средње декадни протицаји применом неких од статистникнх метода, најчешће кориићењем разних вицова корелација.

У овом раду применен је метод аутокорелација. Декадни протицаји су упоређени са средње месечним протицајем. Конкретно, конструнсана је завнсност декадних протицја прве декаде у месецу са средње месечним протнцајем истог месеца.

Аутокорелације у природним наукама имају велику примену, најчешће се користе у корепацији хидролошких и метеоролошких епемената, јер се они мењају по неким

цикличним појавама, које, како смо раније видели могу да трају у дужнм временским интервалима. Познато је да he неку већу вредност протнцаја но правнпу сменити мана вредност, и обрнуто, сваку мању вредност обнчно сменује већа. Овн се односп у хидрологији ренавају прнменом аутокорелација, које користе аутокорелационе коефпцијенте у функцији параметара који су временски и по дужини померени између корелисаних вредности низа. Међутим, овом прнликом желнмо да прнкажемо један скраћенн н упронћени поступак прогнозирана средњег протнцаја Саве за 20 дана унапред, прнменом просте пинеарне корелације (скица 7 п 8).

Ск. 7. - Зависност протицаја I дежаде јануара од месеиног јануарског протицаја.

Fig. 7. - Relationship of the mean discharge of the I-st decades of the January of mean monthly discharge of the same month.

Конструисана је завнсност између средне декадних протицаја п средње месечног протицаја за јануар на реци Сави у Сремској Митровици у периоду 1926-1965. Овај поступак

је урађен за свих 12 месеци у години, али се у овом рапу прнлажу само завнсности за јануар и јули. На скици 7 добнјене су три линеарне завнсности, означене сповима A, B, C, оп којих права "A" вакк за протицаје од $200-1000 \mathrm{~m}^{3} / \mathrm{s}$, "C" за $Q=1000-2000 \mathrm{~m}^{3} / \mathrm{s}$, а "B" za Q Behe of $2000 \mathrm{~m}^{3} / \mathrm{s}$. 3aмисао је овде наиме била , па се на основу познавана среднег протицаја прве декаде јануара прогнознра средњи протицај за 20 дана унапред, односно за II II III декаду зајецно. Мли прецизније речсно, на Савн у Сремској Митровици непрекидно пратнмо величину протицаја кориићењем водостаја и криве протицаја, па у зависности којн је затечени протнцај, прогнозирамо будуће Q, коришћенем једне од завнсности (A, B, C). Међутим, понто су овде корелисаии декадни п месеч ни протицајн, познаванем средне декадног протнцаја, побијамо средње месечни протицај, којн нам служи ца одредимо средњн протицај наредне две декаде. Ца бн то практпчно извели, користимо доњн израз, према којем је протицај за 20 дана унапреп једнак разлицн пзмеђу средне месечног (Q mes), и средне декадног прве декаде (QI), тј.

$$
\mathrm{Q}_{20}=\frac{\mathrm{Q}_{\mathrm{mes}} \mathrm{~T}_{1}-\mathrm{Q}_{\mathrm{I}} \mathrm{~T}_{2}}{\mathrm{~T}_{3}}
$$

где су Q20-средни протицај II и II декапе,Qmes-срепне месеции протинај, QIпротицај прве пекапе, а T1, T2, ТЗ-број цана у месецу, првој декади и зајецно у цругој и трећој декади. Ако то практично изведемо на примеру затеченог средиег протицаја прве декаде јануара од $1000 \mathrm{~m}^{3} / \mathrm{s}$, а користеһи графикон са скпце 7 , и то праву " A ", јер се Q налази између 200-1000 $\mathrm{m}^{3} / \mathrm{s}$, онда је средне месечни протицај $1000 \mathrm{~m}^{3} / \mathrm{s}$. Заменом ових вредности у горњу једанинну добнја се Q за 20 дана од $1050 \mathrm{~m}^{3} / \mathrm{s}$. Или другп пример, ако је протицај прве декаде јануара $2500 \mathrm{~m}^{3} / \mathrm{s}$, у овом случају користећи траву "B" добијамо Qmes=1900 $\mathrm{m}^{3} / \mathrm{s}$. На исти начнн, прорачунато Q за II и III декаду је $1695 \mathrm{~m}^{3} / \mathrm{s}$. Међутим, увек тако не мора да буде.; као и сви други хидролошки модели и овај има својнх мана. Он може да буде успешан ако се остварује са тачношћу од 80 или 70%. Ово важи за случајеве када дође до наглијег пораста нивоа воде у рещи у току јепног месеца или декаде, па је избор прагова протицаја код корнинена једне од три корелационих права у том случају проблематичан. Показаћсмо то на још једном прнмеру. Корелацноне праве на ск. 7. конструисане су са поцацима из периода 1926-1965. године. Намерно су пзоставлене године од 1966-1973, да би се на њих

извринла провера овог модепа. У таб. 13. су упоређени пода ци о средне месечннм протнцајиа јануара добијени корелацијом помоћу података прве декаде истог месеца и осмотрених података. Цакле, овом прнликом се упоређују само срецње месечни протицајю а не и декадни. Јер, од нихове тачности завнсн и тачност декадних протицаја.

Таб. 13. - Средне месеъни протицаји добијени корелацијом и осматраъем у јануару (Сава - Ср. Митровица).
Tab. 13. - Mean monthly discharge was given by correlation and observation in January (Sava - Sr. Mitrovica).

	1966	1967	1968	1969	1970	1971	1972	1973
Корелација	2040	1540	2100	1520	1800	1600	960	910
Oсмотрено	1900	1750	2200	1520	3850	1960	950	901
DQ (\%)	7.3	-12.0	-4.5	0.0	-53.0	-18.0	1.0	1.0

Упоређујући податке из таб. 13. (прогнозиране и осмотрене) долазимо до закључка да су резултати у 6 случајева задовољавајући, а у два са већим одступањем. Изражено у процентима за свих 8 случајева, прогнозирани месечни протицаји остварени су са 75% тачности. Највећи је пзузетак 1970. година, која има одступање -53%. Ова се годнна према рангу њене водності убраја у веома водне године ($2220 \mathrm{~m}^{3}$ /s). Према цикличностима протнцаја Саве и вероватноће средњих вода, овакви протицаји се појављују једном у 15-17 година. Ако по горњој формули израчунамо средњи протицај за другу и трећу декаду, нпр. за 1967. годину, где је Qs месечно за јануар $1750 \mathrm{~m}^{3} / \mathrm{s}$, онда је то протицај од $1600 \mathrm{~m}^{3} / \mathrm{s}$, а према осматрањима за те псте две декаде (20 дана) Q је 1505 $\mathrm{m}^{3} / \mathrm{s}$. У овом случају одступане је -6%. Или, нзаберимо још један пример, прву декаду јула (скица 8). И код ове зависности појављују се три праве ($\mathrm{A}, \mathrm{B}, \mathrm{C}$), од којих "А" важи за протицаје оп $300-1300 \mathrm{~m}^{3} / \mathrm{s}$, "В" од $1300-2000 \mathrm{~m}^{3} / \mathrm{s}$, и "C" $2000-3000 \mathrm{~m}^{3} / \mathrm{s}$. И у овом примеру појављују се с лична слагања као и код јануара (таб.14). Од тестираних 8 година, само се у два случаја појављују веће разлике, у 1972, где се јулски месечни протицај разликује за $-57,6 \%$ и 1969. (-19%). У осталим годинама те разпике су толерантне. И у овом прнмеру прогноза је остварена са 75% тачности. Да би сада проверили и

прогнозиране декадне протнцаје, или протицаје за 20 дана унапред, коришћенем ранијег обрасца, нзрачунати су такви протнцаји и упоређени са осмотреним (таб.15).

Cк. 8. - Зависност протицаја I dexade jyna од месечнот јупског протииаја
Fig. 8. - Relationship of the mean discharge of the I-st decade of the July of mean monthly discharge of the same month

Овде резултати показују да скоро нема бнтнијих разлика у свих 5 годнна пзмеђу осмотрених и података добијених посредним путем. Hajвеће одступање је $5,3 \%$ (1966), а у другим годннама те разлике су практнчно сведепе на нулу. Према томе, модел аутокорелација декадних и срецье месечних протицаја унутар једног истог месеца може да буде применен у прогнози протицаја, како је у овом примеру показано за 20 дана унапред, што је веома значајно ако се воде користе за производпу едектричне енергије или прогиозирају велике воде (таб.15).

Таб. 14.-- Средте месени протицаји добијени корепачијом и осматраъем у јy^у, (Сава - Cp. Митровича).
Tab.14. - Mean monthly discharge was given by correlation and observation in July, (Sava - Sr. Mitrovica).

| | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Корелација | 900 | 1000 | 680 | 900 | 1480 | 540 | 560 | 700 |
| Oсмотрено | 862 | 1110 | 654 | 1110 | 1490 | 548 | 1320 | 708 |
| DQ (\%) | 4.0 | -10.0 | 4.0 | -19.0 | -0.1 | -1.5 | -57.6 | -1.0 |

У овом раду пзабран је само један случај корелације, између прве декаде јануара п јула са одговарајућим месечним подацима. Поступак се наравно може проширити на све декаде у месецу, односно може се корелисати друга декада са протнцајем од 30 дана кога чини друга,трећа и прва цекада наредног месеца, нпн трећа декада месеца са 30-годишњим средњаком треће, прве, друге декаде, итд.

Таб. 15. -- Средњи протицаји друге и треће декаде јула добијени корепацијом и осматрањем (Сава - Ср. Митровица).
Tab. 15. - Mean discharge in the II and III decades of July, was given by correlation and observation. (Sava - Sr. Mitrovica)

	1966	1967	1968	1969	1970
Корелација	946	1205	591	1165	1390
Осмотреноо	803	1166	593	1167	1395
DQ (\%)	5.3	3.3	0.0	0.0	0.0

${ }^{\bullet}$ Пр
Применом методе покретних средина, ове корелације се не морају увек везивати за декаде, нпр. увек чекати пстек декаде па тек онда давати прогнозу. Могу се формпрати декадни протицајю избором било којих дана у месецу и средње месечних протицаја пзбором 30 дана из два суседна месеца. Једноставно, за сваку станицу на Сави н цругим већим рекама сачинити хидролоики модеп, који 的 уз примену програма бити оперативан у сваком датом тренутку, само

је потребан упазни поцатак срецњег протнцаја у трајању од 10 дана. Ово се може поједноставити ако се корелиие једна декада са две унапред, онда би у том случају била пзбегнута употреба месецних протнцаја, нли пак, да се конструние завнсност пзмеђу само две цекапе, како бн се на основу података заврине декаде давале прогнозе за наредну декаду.

Свакако, овај метод, као што је раније речено, не цаје увек тачне резултате, у неким случајевима одступања могу да буду значајна. У том случају, метод можемо комбиновати са неким другим моделом, али је основа поступка ца се у проучаваном спиву увек морају да прате тепденције водостаја преко пзвештајне спужбе, односно да ли водостаји стагнирају, опадају ипи су у порасту. С тиме се донекпе могу да отклоне негативни ефекти ове методе.

ЦИКЛИЧНОСТ ГОДИШЮИХ И МАКСИМАЛНИХ дневних падавина

Цикличност годинииих падавнна. - Падавине су климатски елемент од којих протицај највнше завнсн. Зато бн бщло од значаја да се утврди нихова промена у дужим временским ннтервалима н довеце у везу са цикиичним променама отицаға. Падавине и протицај упоређују се ако се оне осредие за цео слив помоћу неких од метода које се за то употреблавају (метод пзохијета, полигона, аритметиике средине). За слив Дунава чнје је пространство велико, са таквим подацима се није располагало, али смо се послужили са осматрањюма метеоропошке опсерваторије у Београду, на којој се падавине мере од 1888. године [PXM3, 1989]. На сличан начин, као и код протицаја, цикличност падавина нспитана је применом сумарних кривих модулних одступања од просечне вредности за период 1888-1987. За наведени период добијена су цва циклуса са неједнаким временским трајањем, један за пернод 1888-1956 ($\mathrm{n}=69$), и други 1956-1982. ($\mathrm{n}=26$). Први циклус имао је најпре сушнији, а затим влажнији период, при чему је првн сушнији трајао по 1936. године. У њему је забележено неколико краћих влажнијих микроциклуса, први од 1894-1987, другн 1899-1901, трећи од 1911-1915. и четврти од 1923-1927. У влажнијем перноцу, после 1936. ннје било пзразитијих сушних мнкроциклуса. Други циклус падавина (1956-1982), као што је речено је кратког трајања и његов зав ршетак се поклапа са завршетком влажнијег периода IV хидролошког цнклуса на Дунаву (1965-1982). Поспе 1982. године

и код падавина и код отицана настаје сушнији период којн и далье траје. Међутим, на први поглед, примена методе сумарних кривих модуиних одступана од просечне вредности за анализу цнкпнчности пацавнна није псправан, јер се за тако дуги низ цобијају само пва цпклуса, а у истом периоду за протицај се нзцвајају њих виие, па би требало применити неку другу методу. Нпр. иикличност падавина је цонекле проучена применом методе покретних средина [Ракићевн立 T. 1983]. По истој методи, најману просечну суму падавина имао је 30-годиини пернод 1902-1931 ($620,6 \mathrm{~mm}$), затим допазн до ннховог постепеног повећаваюа у перюоду 1931-1960. са Ps= 701 mm , и у последњем 30-годиињњем периоду (1951-1980) падавине су биле повећане, па се он узима као највлажнији $(708 \mathrm{~mm})$. Дакле, између овог начина рангирања периода по њиховој влажности и раније поменутог, постоји битна разлика, па још увек не постоје поуздане и проверене методе за анализу цикличности падавина. Међутим, у овом рацу бавили смо се и другим анализама падавнна, одступањем од просечне вредностн, честином појавливана, учесталоићу макснмалних дневних пацавина, рангирануу гоцина по водности према просечним вредностима падавина.

Кретање годниньх пацавнна у односу на внишегодишни просек. - Просечне вииегодииње падавине за 100-годишњи период су 670 mm са коефицијентом варијације од 0,20. Најводнија година је 1937, када је у Веограду пало 985 mm воденог талога, што је за 47% више од просека, а у осмотреном периоду забепежено је јоџ 4 године са количином већом од 900 mm . То су 1954. (926 mm), 1974. (910 mm), 1980. $(908 \mathrm{~mm})$ и 1919. (905 mm). Најсушнија је 1907. година са $\mathrm{Ps}_{\mathrm{s}}=$ 323 mm , која је са 52% мањка падавина, и 1894. годмне са Ps=464 mm. Поређењем годишњнх падавина са винегодишњим просеком, највише средье впажних година је било у перноду 1888-1897. године чнје су се вредности, осим веома сушне 1894, мало разлнковале од просека. После две сушније године са мањком падавина н до $30 \%(1898$, 1899) и веома влажне 1900 , наступа један краћи период средње влажних година од 1901-1905, а од 1906-1909. је период опет сушних година и тако редом, године су се наизменично смењивале од сушних, средьих до влажних све до 80-их година овог века. Даље, статистнка оваквнх поређења показује да је у обрађиваном периоду бито 38 сушних година, 33 средне влажне и 29 влажних. Поређењем распореда пацавина у хладнијој и топлијој поповини године уочене су неке реткости у томе. Познато је да је м. с. Београц у континенталном плувноме-

трнском режнму са највећим падавннама у летној, а знатно уманеним у знмској половинн године. Међутим, и ту има нзузетака. У 11 година пацавине су биле веһе у хиацнијој половиии године (XI-IV). Последие такве године су 1981. и 1977. Ииаче, летне пацавине чине око 60%, а зимске 40% годишних падавнна. У карактеристнчној 1962. годиии папо је у
 падавнна, ито је ређи спучај међу другим годинама проучаваног периода.

Честина појавыниана подниниих падаинна. - Ако све годиине падавнне пзразимо у класама од по 100 mm п њих међусобио упоредимо, резултати су показали па су најучесталнје падавине од 600-700 mm, тј. оне вредности које су најприближније вишегодишњој вредности (таб. 16). Таквих је појава било 29, приближно јепна трећина свих узорака, затим су по учесталости појава заступљене падавине у интервалу од 700-800 mm (26\%) і од $500-600 \mathrm{~mm}(17 \%)$. У односу на средиу вредност, не постоји симетрнчност појава гоцишних падавина, јер су оне чеиће у вишој класи, нпр. од 900-1000 mm пмамо 5 , а од $300-400 \mathrm{~mm}$ само једну појаву. Ово може указати, да су се пзузетно суине гоцине појавиле у Београду почетком овог века (1907, 1924, 1904), а пзузетно влажне у последних 30 година; у периоду 1954-1987. имамо 7 година са папавинама већим од 850 ипи 900 mm . Послепње суине годи не са падавннама маним од $500 \mathrm{mм}$ су бние $1961 .(465 \mathrm{~mm}$) и 1950. (492 mm). Поито се п падавине понаиају као цикличне појаве, прогнозира се да би у наредним годинама требало очекивати вние суиних година са падавинама нспод 500 mm .

Таб. 16. - Честина појавпивава годишвих падавина y Beorpady
Tab.16. - Frequency of appearing of annualy precipitation in Belgrade

| Класа | Број | $\%$ |
| :--- | ---: | ---: | ---: |
| $300-400$ | 1 | 1 |
| $400-500$ | 11 | 11 |
| $500-600$ | 17 | 17 |
| $600-700$ | 29 | 29 |
| $700-800$ | 26 | 26 |
| $800-900$ | 11 | 11 |
| $900-1000$ | 5 | 5 |

Oвај наступајући сушнијн период поклапа се са суиним периопом иа Дунаву који је почео после 1982. гоцине. Моследие влажније године су 1980. (908 mm), влажнија од просека за 36% н 1981. (851 mm) са вииком падавина оц 27%. После них су средне влажне 1982, 1984, 1985, 1986, док је само сушнија бнла 1983. са $\mathrm{Ps}=512 \mathrm{~mm}$. Изразнто сушне су биле 1992. н 1993. година.

Цикличност максималних дневиих падавина

Y
изучавању плувнометриских режима, посебно место заузимају екстремне врепности, које се испољавају у виду јаких кнша, чије су последице поплаве. По својој јачини и щтетном деповању, јаки ппускови се убрајају у елементарне непогоде. Максималне падавине се најчешће везују за дан, сат или минут; међутим, изучавају се још дводневне, тродневне максималне падавине које узрокују поплаве ширих размера, а у оквнру тога нзучавају се интезнтети падавина, па се аналнзирају 5-минутне, 10-минутне, 20 -мннутне, 30 -минутне плусковите падавине. У нашем случају проучене су максималне дневне падавине које се у Београду мере од 1888. године. Највећа вредност од $92,4 \mathrm{~mm}$ осмотрена је 15. VII 1890. године. За ньом дође 1951. са $88,4 \mathrm{~mm}$ и 1926. са $87,5 \mathrm{~mm}$. У 10 година су забележене максималне падавине веће од $70,0 \mathrm{~mm}$, а у преко 20 година те вредности су биле ниже од $30,0 \mathrm{~mm}$. Изразнто велике дневне падавнне су биле у првој половини овог века, тј. до 1950. године. У периоду 1951-1987. само су три године бнле са макснмапним падавинама већим од 70 $\mathrm{mm} ; 1967$ ($84,8 \mathrm{~mm}$) , 1985. ($75,6 \mathrm{~mm}$), 1971. ($72,6 \mathrm{~mm}$). Како су у последње две по три деценије репативно највеће, односно то је највлаж нији период, пронзнлази да се јаки плускови чешhe јављьау у сушнијнм периодима (већа загревања), па имајући у виду то, у наступајућем сушнијем перноду, после 1982 године, могли бнсмо да очекујемо већи број дана са максималним вредностима изнад 80 или чак 100 mm .

Веропатноћа макснманннх дневннх падавниа.

 решавању бројних водопривредних проблема, нпр. код пројектовања канализације, изградње насипа, одбране од поплава, увек се анализирају максималне падавине применом рачуна вероватноће. Ово се чини из разлога, што су осмотрени низови кратки, у њима се најчешће не налазе историске максималне падавнне, или оне пацавине које се ретко јављају, нпр. једном у 100 година. Коришћенем краћих низова и неке од метода статистнчке расподеле, осмотрени подаци сеекстраполирају до највећих вредности, па се утврђују 50-годишье, 100 -годиниье или 150-годишње падавине. Ово правило важи и за станице које имају дуге низове осматрања уколико се и на њима нису појавиле историске вредности. За случај Београда, вероватноћа пацавина је обрађивана углавном у посператном периоду [Зепенхаснћ E. Бугарнновн方 H. 1979], где су поред дневних обухваћене падавине за часове и минуте, обрадом щнтезитета, што се могло постићи захваљујући непрекидном регистровању падавина помоћу омбрографа после 1950. године. Коришћењем података о максималним дневним падавинама у 100 -годишњем периоду $\{P X M 3,1989]$, урађена је вероватноћа пневних падавина применом Log-Pearson III paсподеле, која је показала најболе прилагођавање осмотреним подацима. Статистичким прорачунима, добијене су средње дневне максималне папавине у Београду оп $42,7 \mathrm{~mm}$, са природним врецностима коефицијента варијације од 0,40 и Сs=1,14.

Анализом вероватноће киша јаког интезитета (скица 9) добијене су вероватне максималне цневне падавине за $2,10,50$, 100 и 500 година (таб. 17).

Резултати показују да је досацашњь највећа дневна сума падавина од $92,4 \mathrm{~mm}$ приближно 50 -годишња вредност. (2%); међутим, 100-годишње и падавине ређе учесталости појава се још нису појавиле у Београду, иако је прошло 100 година непрекидних осматрања. Не само щто се нису појавиле киие ређе учесталости појава, него се јои нису појавиле ни историске максималне папавние, какав је спучај са неким другим кииомерним станицама у Србији. Под појмом "историске максимапне падавине" подразумевамо знатно већу вредност од досада појавлених максималних падавина, обично је то 1,5 до 2,0 пута већа количина у односу на последњу максималну дневну количину падавина. Ако је то у Београду $92,4 \mathrm{~mm}$ онда би историска вредност била негде између $140-180 \mathrm{~mm}$. Каца би се она уврстила у рачун вероватноће, вероватне максималне дневне падавине биле би веће него што су приказане у таб. 17. Произилази да вероватноће нису увек мерило стварних максималних падавина, већ само једна оријентација у заштити од штетноп деловања атмосферских вода. Па је то тако, показују регионалне анализе осмотрених падавина у Србији. Када се упореде подаци м. с. Београд са другим падавинским станицама, резултати говоре да су максималне цневне падавине у Београду доста ниске. Нпр. максимална дневна количина је у Смедеревској Паланци 129,3 mm, Смедереву 110 mm , Младеновцу $116,5 \mathrm{~mm}$, Сењском Руднику $147,1 \mathrm{~mm}$, Гочу $141,0 \mathrm{~mm}$, Азањи $130,5 \mathrm{~mm}$, Великом Грацишту 113 mm , Великој Крсни $136,5 \mathrm{~mm}$, Грошници $136,8 \mathrm{~km}$, Кривој

Феји $129,5 \mathrm{~mm}$. Таору /донем) $187,2 \mathrm{~mm}$ п Раковом Долу (слив Власине, када је 1988. године била катастрофална поплава Власотинца) чак 220 mm .

Таб. 17. - Вероватиоһа максималних дневних падавина у Београду.
Tab. 17. - Probability of maximal daily precipitation (mm) in Belgrade

Вероватноћа	Године јавльања	Падавине
0.5%	500	120
1%	100	107
2%	50	94
10%	10	65
50%	2	38

Имајући у виду, да је Република Србија једно хомогено географско подручје када су у питању појаве киша јаког интезитета проузрокованих од познатих облака кумулонимбуса, стационарног стања и великог вертикалног развоја, сигурно је да и у Београду треба очекивати јаке пљусковите кише, чија би вредност могпа да буде далеко већа од оних које су добијене по рачуну вероватноће (таб. 17). Стогодишње падавине су 107 mm , а петстогодишње 120 мм. Према томе, закыучак би могао да следи: историске максималне дневне падавине за последьих 100 година у Београду се нису појавиле; оне се могу очекивати у наредним периодима, а судећи по већ сада осмотреним вредностима, сигурно је да би та количина могла да достигне бројку од преко 150 или чак 200 mm. Ово се свакако односи на уже подручје града, где се налази м. с. Београд, у којем је хетерогена рељефна конфигурација са урбанизованом срецином, којом су некада текли потоци и речице, па се рачуна да ће коефицијенат отицања у таквим срединама бити јединица. Садашња изграђена кишна канализација је недовољна да прими ни 10-годишње јаке кише $(65 \mathrm{~mm})$, па није тешко закључити какве би град све последице доживео са појавом не само кише од 120 mm , него и 150 mm. Ова се научна чињеница мора да има у виду приликом доношења будућих планова развоја Београда са новим пројектима евакуације сувинних атмосферских вода, нарочито у нижим деловима града, поред Саве и Дунава.

Најчешћи датуми појаве максималннх падавина. Осим проучавања режима падавина, пре свега њихове количине и распореда, у климатологији се проучавају и датуми појаве јаких киша. Познато је, да је њихово штетно деловање

највеће у вегетационом периоду када се полопривреди наносе највеће штете. Јаке кише могу да захвате један шнри регион, па је осим просторног распореда, значајио проучити и у којем се делу године оне јавлају. На овај начнн се могу давати упозорења о појавн поппава када треба спасавати вудство и имовину. Кнше јаког пнтезитета, осим за кумулонимбусе локалног развоја, могу да се појаве и уз фронталие кише, при чему неке путање циклона у томе нмају посебан значај. Користећи цатуме појаве максималних дневних падавина, урађена је статистика појавливања по месецнма и пентадама за проучавани период, па се за београдско подручје може реһи, да се макснмалне дневне падавнне најчешће јављају у пролеће и лето, из чега произилази да су плусковитог карактера. (таб. 18). Ретко се појаве у зиму, свега цва случаја, док је пролећни месец мај са највише појава (16), затим су то јуни и август са по 14 дана, септембар са 12, април са 11. Изузетно максималне падавине, њнх преко 10 по величини (од 70-92 mm) осмотрене су: 15. VII, 22. IV, 5. VI, 10. VIII, 21. V, 30. IV 4. IX, 12. IX, 3. VI, 31. VII.

Таб. 18. - Најчешћи датуми појавъивана максималних дневних падавина у Београду.
Tab.18. - The most frequency dates of appearing maximal daily precipitation in Belgrade.

Месец	I	II III	IV	V	VI VII VIII	IX	X	XI XII			
Дана	0	1	2	11	16	14	13	14	12	5	6
1											

Осим за месеце, време појавливана екстремних падавнна посматрана је и по пентадама, којих је било укупно 73 у години. Овим прилазом долазимо до прецизнијих показатела о датумнма појаве изузетно јаких падавина, што је са аспекта давања прогноза и упозорења веома битно. Према резултатима са скице 10 , највећи број дана са максималним дневним падавинама је у 32 пентади године (156-160 дани) или од S.VI-9.VI; затим су то пентаде од 141-145 дана, 146-150, 186-190, 226-230 дана у години. Према подацима са нсте скице, постоји одређено груписање тачака током године, најчешће између 120-160 дана у години, затим између 180-200 дана н од 220-250-ог дана. С пруге стране, најмаюе појава је у зиму, али и у неким летњим месецима је забележен мали број појава, између 200-220 дана (19. VII-23. VII), само по један случај, док је у јесен то период од 260-280-ог дана, такође са по једном појавом. Чешће макснмалне падавине се још јављају нзмеђу 106-110 дана, 136-140, 151-155, 191-195-ог дана.

У погпеду изумпања иитезитета кина за краће временске ннтервале, нир. за часове, минуте, ту постојн виие расправа које размат. дуу ову ироблематику. Ауторн Зеленхаси立 E. и Бугарннови方 H. су проучнли вероватне макснмалне кние за Београд за пернод 1951-1977. Издвојене су падавнне за временске пнтервале од $10-50$ минута, 1, 2, 6 и 24 часа, као н дводневне н тродневне падавине (таб. 19)

Таб. 19. - Bисина падавина за изабрану вероватноћу и тpajate y Beorpady (1951-1977).

Tab. 19. - Hights of the rain for adopted probbility and their duration in Belgrade (1951-1977).

Година јављана	10 min	20 min	30 min	50 min	1 cas	2 čas.	6 čas.	12 cas..	24 čas	2 dana	3 dana
2	12	17	18	22	25	27	34	37	44	53	60
5	20	27	30	34	35	40	47	53	62	72	78
10	28	34	38	43	45	50	61	68	75	83	89
25	38	35	40	55	58	65	77	83	90	98	100
50	47	55	60	66	69	78	90	96	103	110	113
100	60	68	72	78	81	90	102	108	113	118	120

Када се 24-часовне падавине из предходне табеле упореде са раније оцређеним истим вредностима, види се да постоји мала разлика; 100-годишње једнодневне падавине су у првом случају 107 mm , а према подацима из таб. 17 , 113 mm . Међутим, и једни и други подаци и овом приликом показују да су падавине подцењене. Према подацима за м. с. Неготин, 100-годниње једнодневне падавине су 180 mm , а за Београд, као што је већ речено, само 113 mm . И овом прилином треба истаћи да су и Београд и Неготин у једном истом плувиометриском режиму, па се и овде потврђује правило да се историске максималне падавине у пнструменталном периоду у Београду нису појавиле. Може се још истаћи да оне у Београду буду веће него у другим местима, јер је велико урбано поцручје са јаким загревањем, па су услови веома повољни за развој облака великог вертикалиог развоја.

СУШНИ И ВОДНИ ПЕРИОДИ НА ОСТАЛИМ PEKAMA CPDИJE

Осим Дунава као велике међународне реке, на којем су обрађене цикличне појаве у Бердапу, а депимично у неговом горьем току у наној земљн (Бездан, Богојево), појаве сушних и водних периода проучени су и на другим рекама у Србији, на којима је било непрекндних осматрања у последних 60 година. То су Tиса у профилу Сента, Сава у Сремској Митровици, Дрина у Бајиној Банти, Лим у Пријеполу, Велика Морава у Љубичевском Мосту, Занадна Морава у Гугальском Мосту, Ибар у Рашкој, Нншава у Белој Паланци и Црница у Параћину. На скоро свим станицама формирани су низовн од 1926-1985. илн 1931-1990. година.

т и с а

Тиса је по површнни слива ($157.200 \mathrm{~km}^{2}$) прва, а по количини воде ($785 \mathrm{~m}^{3} / \mathrm{s}$) друга по величнни притока Дунава. Извире у Карпатима на 1800 м.н.в. После тока од 966 km , улива се у Дунав код Сланкамена на 75 м.н.в. Највећим целом тече равницом, па је то равничарска река са малим падом и великим бројем меандера. Њена дужина у Југославији је 160 km [Милованов Д. 1987]. Просечна ширина Tисе у нашој земљи је $190-240 \mathrm{~m}$, а дубнна $4-8 \mathrm{~m}$ при средњим водостајима [Дукић Д. 1977]. За време ниских водостаја, на ТиСп се појављују бројни плићаци, па се пловндба обуставља. У најсуинијој 1949. години, Тиса се на многим местима могла прегазити. Изградњом високе гравитационе бране код Бечеја, 63 km узводно од њеног ушћа, измењен је режим ниских водостаја до Сегедина у Мађарској, па се пловидба на том сектору обавль без тешкоћа. Иначе, Тиса је пловна до Чонграда у Мађарској, око 240 km , а мањн бродови могу да плове и до Токаја (532 km).

Слив Тисе је развијен у зони изразито континенталне климе, где је топъене снега знатно брже и где су испаравања лети јако увећана. Средње годинње падавине на извору реке су од $1000-1600 \mathrm{~mm}$, а ннзводно опадају, тако да у Мађарској н Војвођанској равници опадну на $550-600 \mathrm{~mm}$. Отицања у сливу реке су веома мала; просечни специфични отицај реке у Сенти је $5,53 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$, мани је него на Великој Морави, а знатно нижи од отицања Дунава и Саве.

Протнцаји на Тиси су обрађивани угиавном у овом веку, почев од 1920. или 1930, године. Међутим, забелешки о осматрањнма водостаја било је и у прошлом веку.

Најдужа су у Сенти, нде јо формираи 60-годиипии низ периода 1931-1990. година (таб. 20). Највеһа "тицања на Тиен се појавлују почетком пролећа и трају до мяја, када се збов велике евапотранспирације она пагло снизе, срепне месеиии мајски протпцај од $1209 \mathrm{~m}^{3} / \mathrm{s}$ пацпе у јуну на $918 \mathrm{~m}^{3} / \mathrm{s}$, па би те исте вредности у летьим и јссеним месепима биле препоповтьене.

Таб. 20. - Средне месечни и годишни протицаји Tuce (Сента) у nepuody 1931-1990.

Tab. 20. - Mean monthly and annual discharge of the Tisa river (Senta) in the period 1931-1990.

	I	II	III	IV	V	VI	VII	VIIII	IX	X	XI	XII
Год.												
Qs	635	754	1170	1444	1209	918	730	494	416	416	565	659
CV	0.66	0.54	0.42	0.46	0.57	0.65	0.63	0.54	0.73	0.63	0.73	0.61
σ	419	407	491	664	689	597	460	267	304	262	412	402

Велике воде на Тиси изазивају кише и топљене снега, а летне суше и велика испараваюа условљавају минималне воде у лето и јесен. Тиса је позната река са велииим колебањнма протицаја. Коефицијентн варијације годишњнх протицаја су скоро за 2 нли 2,5 пута већи од пстих коефицијената Дунава, Драве ини Саве. Док постоји сагласност у режиму Дунава, Драве и Саве, дотле Тиса у томе потпуно одступа. На њој су колебаюа протицаја повећана током целе године; највећа су у септембру и новембру ($\mathrm{Cv}=0,73$), а најмана у марту и априлу ($\mathrm{Cv}=0,42-0,46$). По томе се Тиса приближава режиму Велике Мораве п других већих река у источном делу наше земље.

Променъивост протицаја изражена је и према односу годишњих вредности са просеком периода. Стандардна девијација која карактерише ову променљивост је у свим месецима повећана, у неким се приближава средње месечннм протицајима, а у другим чини половину њихове вредности. Највећа је у време великих вода (пролеће), а најмања у пето и јесен и поклапа се са минималним водама реке Tисе. Међутим ако стандардну девијацију нзразимо у процентима, онда она прати коефицијенте варијације, највећа је у време најма њих вода. У годншњој вредности $\sigma=274 \mathrm{~m}^{3} / \mathrm{s}$, односно за ову вредност годншњи протицаји могу да одступају од вншегодишњег просека. То је неупоредиво више у односу на Дунав, Саву и Драву у којих је ова вредност око 20%.

Цикличност ниэа 1931-1990.годниа. - у последиих 60 година у сливу Tисе је забепежено виие суииних п влажних пернода. Њихова цужина и распоред разпичито су се одразили на водност краћих пернода унутар 60-годииньег. Нпр. пета деценија периода 1971-1980., имала је вишак отицаиа од $14 \%\left(108 \mathrm{~m}^{3} / \mathrm{s}\right)$, нто није забележено на другим рекама црноморског слива (Дунаву, Драви, Сави, Дрини). На ово су утицале водне године 1974, 1977, 1978, 1979, 1980. у којима су средне гоциини протицајн били већи оц $1000 \mathrm{~m}^{3} / \mathrm{s}$. У свим осталим цеценијама ова одступања су толерантна, па се њиховн просеци узнмају као меродавни за изучаване режима реке Тисе и нених притока. И 20-годинни низови показују сличне резултате, пошто три изабрана таква периода нмају одступања мања од $4,0 \%$. Заклучак је, да на станицама Тисе, меродавни низови могу да буду 20-годишњн пернодн, али и 10-годишњн ако се они предходно тестирају са дужим низовима на станицама на нстој реци нли најближих на суседннм рекама.

Да би тестирали просек 60-годишњег низа, упоредили смо податке Тнсе са нстим периодом на Дунаву у Оршави-Кпадову, где је раније анализиран 150-годишњи низ. У оквиру нега, издвојен је пернод 1931-1990. и установльен протицај од $5531 \mathrm{~m}^{3} / \mathrm{s}$. Он се разликује од 150-годииньег за само $1,3 \%$. Према томе, и период 1931-1990. на Тнси у Сенти узима се као репрезентативан. И према статистичким методама потврђена је цикличност истог низа. Тако је према раније датом обрасцу, средња квадратна грешка вишегодишњег отицања $Q s=4,5 \%$, а коефнцијента варијације $C v=10 \%$. И једна и друга вредност се налазе у границама дозволених одступања, прва до $5,0 \%$, а друга између 10-15\%.

Класнфнкација година по водностн. - На сличан начин како је поступљено са подацима Дунава, све године обрађеног периода на Тиси су рангиране по водности и приказане у таб. 21. Веома сушне године су са протнцајем од 350-450 $\mathrm{m}^{3} / \mathrm{s}$ у које спадају 1943. и 1964, док су веома водне са годицюнм протнцајем од $1300-1700 \mathrm{~m}^{3} / \mathrm{s}$, то су 1941. н 1970. година. Сушне године су са отицанем од $450-550 \mathrm{~m}^{3} / \mathrm{s}$, где је забележено 11 таквих година, највиие их је у веома сушном перноду 1946-1954. година.

Водне године су са протицајем од $950-1300 \mathrm{~m}^{3} / \mathrm{s}$. Ту је сврстано 12 година, приближно исто колико и сушних, док је година сдредње воцности ($550-950 \mathrm{~m}^{3} / \mathrm{s}$) 33. Оне се јављају просечно сваке друге године, слично као и на другим рекама у Србнји. Честина појавънвања сушних и водних

година је просечно сваке иете годнне. Катастрофално суина ($\left\langle 350 \mathrm{~m}^{3} / \mathrm{s}\right.$) и катастрофанно воцна гоцина ($>1700 \mathrm{~m}^{3} / \mathrm{s}$) се нису појавнле у инструменталном периоду.

Таб. 21. - Kласификација година по водности Tисе (Сента) у nepuody 1931-1990.
Tab.21. - Clasification years in their watery of the Tisa river (Senta) in the period 1931-1990.

Водност године	Протицај	Г О д и н е	Epoj
Катастрофално сушне	<350		0
Веома сушне	351-450	1943, 1961.	2
Сушне године	451-550	$\begin{aligned} & 1934,1946,1947,1949,1950,1954,1959 \text {, } \\ & 1963,1973,1984,1990 . \end{aligned}$	11
Средње водне године	551-950	$\begin{aligned} & 1931,1932,1933,1935,1936,1937,1938, \\ & 1939,1944,1945,1948,1951,1952,1953, \\ & 1956,1957,1958,1960,1962,1964,1967, \\ & 1968,1969,1971,1972,1975,1976,1982, \\ & 1983,1985,1986,1987,1988 . \end{aligned}$	33
Водне године	951-1300	$\begin{aligned} & \text { 1940, 1942, 1955, 1965, 1966, 1974, 1977, } \\ & \text { 1978, 1979, 1980, 1981, 1989. } \end{aligned}$	12
Веома водне	1301-1700	1941, 1970.	2
Катастрофално водне	>1700		0

Најводнија година по средюе годишњем протицају је 1941. Тада је коритом Тисе протекло $1644 \mathrm{~m}^{3} / \mathrm{s}$, што је два пута више од просечне вредности. За њом следе 1970, као веома водна са $\mathrm{Qs}=1452 \mathrm{~m}^{3} / \mathrm{s}$, 1940. ($1206 \mathrm{~m}^{3} / \mathrm{s}$), 1980. (1162 $\mathrm{m}^{3} / \mathrm{s}$). На Тиси је укупно 11 година са протицајем већим од $1000 \mathrm{~m}^{3} / \mathrm{s}$, н 8 годнна са Qs мањим од $500 \mathrm{~m}^{3} / \mathrm{s}$. Најннжн средње годишњи протицај и највиши се односе као $1: 4,43$, што је још једна потврда континенталности режима Тисе.

У погледу класификација година по водности постојс разлике ако се праве одиоси пзмеђу водостаја и протицаја. Неке године су по водостају веома суине, а по протицају сушне, нли по протицају водне, а по водостају средне водне. На ово утиче човек, којн ремети режим водостаја, нзградном наснна, пресецанем меандера и окука, регулацијом корита (нздизање и спуштање речног дна), успоравањем вода Тисе од високих водостаја Дунава, или утицајем бране код Бечеја, која успорава ниске водостаје Тисе до Сегедина. Тако је нпр. по средне годишњем водостају 1947. изузетно сушна, а по протицају сушна година. И ако Тиса припада меновитом режиму, слично као Дунав и Сава, ппак постоје одређене разлике у неким елементима режима, нпр. у временском појављивану година карактернстичне водности. Упоређена са Дунавом у Ђердапу и то у периоду поспе 1930. године, веома сушне на Дунаву су 1943. и 1949, а на Тиси 1943. и 1961, док су веома воцне на Дунаву 1937, 1940, 1941, 1955, 1965. и 1970, а на Тиси само 1941. и 1970. година. Послецње сушне године на Тиси су 1984. и 1990. година, а на Дунаву 1973. и 1983.годнна. Три последне водне године на Дунаву су 1979, 1980. н 1981, а на Тиси непрекндно за редом године од 1977-1989. у односу на Саву ова одступана су и већа. На Сави су веома сушне 1946. п 1949, а веома водне 1937, 1940, 1955. п 1970. У овом случају, постоји коинцинденција само са 1970. годином, јер се она као веома водна појављује и на Сави и на Тисн.

Што се тиче прогноза дањнх промена карактеристика отицања на Тиси, судећи по аналогијама појављивања година у прошлости, у наредном перноду може се очекивати више годнна средње водности са $Q s=550-950 \mathrm{~m}^{3} / \mathrm{s}$, јер је поспедња таква година била 1988., уз неку појаву сушне године, јер је у последњих 10 година знатно више водннх година. Исто тако, до краја овог века, већа је вероватноћа да се појави веома сушна, него веома водна, јер је прва последња 1961, а друга 1970.

Честина појавливаньа протицаја и пихово трајање. Цикличност отицања на Тиси у тесној је вези са честином и трајанем одређених протицаја. Ако све годишње врецности нзразнмо у класе од по $200 \mathrm{~m}^{3} / \mathrm{s}$, међусобним поређеьем дошло се до показатеља да су најучесталији годишњи протицаји у класи од $700-900 \mathrm{~m}^{3} / \mathrm{s}$, укупно 20 година ($33,3 \%$), односно годишњи протицаји најчешће варирају око просечне вредности, затим су то протицаји оп $500-700 \mathrm{~m}^{3} / \mathrm{s}$ са 18 случајева (30\%), а ова заступљеност опада ндући ка вишим и нижим класама, нпр. од $300-500 \mathrm{~m}^{3} / \mathrm{s}$ је 6 појава, оц $900-1100,9$ појава, итд.

Tаб. 22. - Честина појаньияана годииньих протицаја Tuce y Centu y nepuody 1931-1990.
Tab.22. - Frequency of appearing annual discharge of the Tisa river in Senta in the period 1931-1990.

Kласа	$300-500$	$500-700$	$700-900$	$900-1100$	$11-1300$	$13-1500$	$15-1700$	Год.
Број	6	18	20	9	5	1	1	60
$\%$	10.0	30.0	33.3	15.0	8.3	1.7	1.7	100.0

За Тису је значајно да се проуче трајања протнцаја изнад одређеног прага, јер су она у тесној везн са пловндбом н одбраном од поплава, не само протицаја, него и водостаја, јер однос H / Q није увек једнозначан. Средне годишњн водостај на Тисн у Сенти је око 200 cm . Изнад ове висине, водостаји трају око 160 дана ($43,8 \%$), 400 cm 70 ($19,2 \%$) дана, а преко 600 cm 25 дана. На Тиси се појавлују и негативни водостаји (п до - 200 cm), као последица дубљена корнта. Нискп водостаји нормално најдуже трају, нзнад - 100 cm 340 дана у годнни, а преко 0 cm 280 дана.

Честина и трајање срецње дневних протнцаја је у складу са режимом Тисе. Најучесталији средње дневни протицаји су у класи од $200-300 \mathrm{~m}^{3} / \mathrm{s}$, тј. протнцаја који се најчешће појавлују у вегетацноном перноду, чнје је средне винегодишње $\mathrm{Q}=240 \mathrm{~m}^{3} / \mathrm{s}$. Они пмају честину од 58 дана у години, а затим су то протнцаји од $300-400 \mathrm{~m}^{3} / \mathrm{s}$ (40 дана) и 400-500 $\mathrm{m}^{3} / \mathrm{s}$ (41 дан). Изнад $100 \mathrm{~m}^{3} / \mathrm{s}$, протмцаји на Тиси трају свих 365 дана, преко $200 \mathrm{~m}^{3} / \mathrm{s}, 340$, а изнад $500 \mathrm{~m}^{3} / \mathrm{s}$ 201 дан. Макснмалне воде трају краће од 20 дана, изнад 2000 $\mathrm{m}^{3} / \mathrm{s} 21$ цан, а преко $2500 \mathrm{~m}^{3} / \mathrm{s}$ три дана.

Велике воде. - Макснмални протицаји на Тисн обрађени су од 1931. годнне, док су водостаји осматрани од 1892. [СХМЗ, 1972]. Апсолутно највећи протицај на Тиси је $3730 \mathrm{~m}^{3} / \mathrm{s}$, а потом 1970. ($3613 \mathrm{~m}^{3} / \mathrm{s}$). У поспедњих 20 годнна, највећи протицај осмотрен је 27. 04. 1977. године ($2880 \mathrm{~m}^{3} / \mathrm{s}$) н 1974. ($2720 \mathrm{~m}^{3} / \mathrm{s}$). Најучесталије велике воде су у годинама од 1940-1942. са Qmax од $3200-3400 \mathrm{~m}^{3} / \mathrm{s}$, када су у Војводини забепежене историске поппаве. Тада су спојени поплавни таласп Цунава, Тисе п Тампиа п нанете највеће штете привреди Војводине у исторнјн. Средна ветика вода Тисе у Сенти је $1707 \mathrm{~m}^{3} / \mathrm{s}$, са специфичннм отицајем од $12,1 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$.

Вероватне вепнке воде на Tиси су у домену $50-1$ годиниих осмотрених вода, док су оне ређе учесталости (веће од 1%) нису појавнле у овом веку. Апсолутно мансимална вода од $3730 \mathrm{~m}^{3} / \mathrm{s}$ је вероватноһе 2%, док би наредна 100-годинна могла да нзносн око $4000 \mathrm{~m}^{3} / \mathrm{s}$, а 500 -годинна oro $4300 \mathrm{~m}^{3} / \mathrm{s}$.

3a Tису као равничарску реку са веома малимм падом, неопходна је вероватноћа и макснмапних водостаја, јер се прогнозе и одбране од поплава ослањају на податке о водостају. На Тиси је било преко 7 година са максималним водостајем вншим од 800 cm . Највиин је био 1970. (907 cm), а потом су високи водостајн забележени 1895, 1919, 1924, 1932, 1940, 1941. Вероватноћа 20-годишнег Hmax је на коти $81,70 \mathrm{~m}$, 50 -годишњег на $82,30 \mathrm{~m}$ и 100 -годншнег $82,70 \mathrm{~m}$. При појави леда и загушења, ове висине бивају више, о чему се при одбрани од поплава мора водити рачуна.

Максималне воде на Тиси се најчешће јављају у пролеће (апрнл, март), мада нису ретке ни у јуну, али им је честнна повећана и у зиму. Најтеже последице оставлају поплаве у априлу и мају, јер се тада плави већ набујала вегетација и засејане оранице са највећим штетама, пошто се изливна вода задржава дуже у полоју и споро враћа у речно корито.

Мале воде, - Честина појавливања малих вода је велика. У Сенти је у перноду 1892-1970. забележено 34 вредности водостаја ннжнх од -100 cm . На спичан начнн се понашају и минимални протицаји, који су обрађени такође у периоду 1931-1990. Апсолутно минималне воде иду и до 80,0 $\mathrm{m}^{3} / \mathrm{s}(1943,1962)$. У обрађиваном периоду је 23 године са минималним протицајем испод, $150 \mathrm{~m}^{3} / \mathrm{s}$. Средња годишња мала вода је $171 \mathrm{~m}^{3} / \mathrm{s}$. И на Тиси је најдужи сушни период био од 1946-1954. године. У свим тим годинама, минимални протицаји су се кретали око $100 \mathrm{~m}^{3} / \mathrm{s}$. Маловодни периоди на Тиси могу да трају и месец дана.

Мале воде се јављају у јесењој и зимској сезони, у првом случају због ниске издани и малих падавина, а у другом због залеђивања површинског слоја земљишта и малог отицања од снежнице која се на планинама топи тек у пролеће. У 95 -годишнем периоду, далеко највећи број минималних вода је у октобру (25), а потом у септембру (17), децембру (16) и новембру (14). Од IX-XII је укупно 76% ниских водостаја, што је ређи случај међу другим рекама у Србији. На Тиси нису забележене изузетно мале воде у марту, априлу и мају, јер се тада јављају велике воде.

Bepobatholia manhх вода Thсе исказана је обрадом водостаја и протицаја. Стогодиини ниски водостај је у Сенти на коти $71,20 \mathrm{~m}, 50$-годиини $71,30 \mathrm{~m}$, 20 -годишни 71,50 н 10 -годишни $71,70 \mathrm{~m}$. Трансформнсано у нивое воде, то су водостајн од $-209 \mathrm{~cm},-199 \mathrm{~cm},-179 \mathrm{~cm},-159 \mathrm{~cm}$.

Вероватно мали протицаји су такође јако ниски. До сала се појавно 50 -годиинии миннмални протицај од 80,0 $\mathrm{m}^{3} / \mathrm{s}$. Стогодишна мала вода је $70,0 \mathrm{~m}^{3} / \mathrm{s}$, а 10 -годишња 100 $\mathrm{m}^{3} / \mathrm{s}$. За Tпсу као пловну реку су интересантни сушни периоди који могу да трају и преко 30 дана, са протицајем чнја је најчешћа вредност око $125 \mathrm{~m}^{3} / \mathrm{s}$.

Cana

Сава је по протицају ($1650 \mathrm{~m}^{3} / \mathrm{s}$) највећа притока Дунава. Потнче из западног дела Балканског полуострва, где су падавине веће, рељеф израженији, а одводњавна динарски планински систем са доста појава краса. Сава је дуга 945 km , од чега је око 205 km у Републици Србији у којој прима њену највећу притоку Дрину и већи број маних, које долазе с десне стране, међу којима је позната Колубара.

У профилу Сремска Митровица којн је обрађен у овом раду, Сава има површнну слива $87996 \mathrm{~km}^{2}$, дужину тока 809 km , обим слива 2155 km , средњу надморску виснну слива 539 m , закрашћеност слива 25%.

Хидролошка осматрања на Сави у Сремској Митровици врше се непрекидно од 1926. године, па је и на овој реци обрађен 60-годишњн низ периода 1926-1985. Просечни годишњи протнцај реке је $1588 \mathrm{~m}^{3} / \mathrm{s}$ са специфичном издашношћу од $18,0 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$ н средњнм падавинама у сливу од 1120 mm . Висина отицаја је 568 mm , испаравање 552 mm са коефицијентом отнцања од 0,51 . Најманы протицаји Саве нду и до $200 \mathrm{~m}^{3} / \mathrm{s}$, а највећи преко $6000 \mathrm{~m}^{3} / \mathrm{s}$.

Средње месечни протицаји зависе од количине и распореда падавина, али н од утицаја других физнчко-географских карактеристика слива. Највећи су у пролеће (III-V) са вредностима већнм од $2000 \mathrm{~m}^{3} / \mathrm{s}$, а најмањи у лето и почетком јесени, испод $1000 \mathrm{~m}^{3} / \mathrm{s}$. Најмање срецње месечно Q у августу од $683 \mathrm{~m}^{3} / \mathrm{s}$ и највеће у априлу ($2433 \mathrm{~m}^{3} / \mathrm{s}$) односе се као 1:3,56 (таб. 23). Колебања месечних и годишних протицаја на Сави су мала и веома су слична промени протицаја Дунава. Она су условљена и околностима, што обе реке

припадају мешовитом (сложеном) режиму. У доњем току Саве од Сремске Митровице до Београда гопишње Cv је око 0,20 . Узводно је у манем порасту, у Загребу 0,24 , Радечу 0,24 .

Таб. 23. - Средне месечни и годишни протицаји Саве код Сремске Митровице у периоду 1926-1985.
Tab. 23. - Mean monthly and annual discharges of the Sava river (Sremska Mitrovica) in the period 1926-1985.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год.
Qs	1767	1854	2207	2433	2121	1493	1007	683	704	1080	1757	1944	1588
CV	0.43	0.37	0.36	0.38	0.37	0.36	0.48	0.58	0.53	0.64	0.47	0.41	0.20
σ	760	686	794	924	785	537	483	396	373	691	826	797	318

Највећа колебана месечннх протицаја има октобар у којем је Сv=0,64. Други месец по величини коефпцијента варнјације је август $(0,58)$, а потом септембар $(0,53)$. Уопште узев, Сава има највећа колебања протицаја у јесен и лето, а најмања у зиму и пролеће. И овде важи правило, да највећи коефнцијенти варијације прате најмање вредности протицаја и обрнуто, најмањи коефицијенти варијације су уз највеће вредности протнцаја. По променама протицаја, Сава има спичан режим Драви, док одступа у односу на Тису. Променљивост протицаја у односу на просечну вредност је у супротности са коефпцијентнма варијације. Бројне вредности средње квадратног одступања су највеће у пролећно-зимским месецима, када она чине скоро једну трећину месечног протицаја, а најмане у лето и јесен, приближно половина месечних вредности. Међутим, ако ове вредности нзразимо у процентима, онда су и ове вредности највеће у време најмањих вода.

Цнкличност периода 1926-1985. година. - Истраживане цикличности отицања на Сави започета су после 1975. [Институт "J. Чернн", 1975], када су формирани низови дуж ине од 50-60 годнна, а на узводним профилима (Славонски Брод) и преко 120 година. Како је режим Саве на већини њеног тока међусобно сагласан, у истом смисту постоји сагласност цикличних периоца. Применом методе сумарних кривих моцулннх одступања на хидролошка осматрања у Славонском Броду од 1856. године, Сава је имала више циклуса са израженим сушним и водним периодима. Први циклус је трајао од 1856-1882. са сушнијим периодом од

1856-1867. и влажиијм од 1868-1882. године. Следећи циклус је 1883-1920. године, при чому је влажнији период код овог циклуса знатно дужег траіяна (1890-1920). Треһн циктус је трајао ол 1921-1953. године, четврти оп 1954, којн и цаље траје.

И ако је Сава једна од веһих река Балканског нолуострва са елементима рожима који су мане променливи по времену, ипак се јавлају разтнке у отицану нзмеђу појединих временских јединица. Тако су од укупно шест упоређених деценија, них четири циктичне, а две имају значајнија одступања. Цнклинна су прва и последне три деценије са одступањем од вишегодишњег просека за $1-3 \%$, док су међутим, коц друге (1936-1945) и треће (1946-1955) те разлике знатно веће. Веома водие 1937, 1940, 1941. и 1944. повећале су отицане друге деценије за 12%, док су веома сушне 1946, 1947, 1949, и 1950. смањнле водност треће деценије за 10%. Међутим, 20-годишњи просеци прате вншегодинне. Сваки изабрани такав низ мало одступа ($5,0 \%$), па се они узнмају као меродавни за изучавање режима реке Саве.

Щикиичност 60-годиињег периода на Сави у Сремској Митровици проверена је и по неким другим статистичкнм методама. Тако је средње квадратна грешка вишегодишнег отнцана по раније датом обрасну, једнака $2,6 \%$, а грешка коефицнјента варнјације ($\Sigma \mathrm{C} v$) 9,31 . И јепна и друга вредност се налазе у потребним границама за оцену репрезентативности дугогодинњнх хидролошких низова.

Кпасиффкација година по водиостн. - Примењујући нсте критеријуме за оцену водности година на Дунаву, на сличан начин тестирана је водност година 60-годишњег периода на Сави (таб. 24). Користећи графикон расподеле годишних протицаја у њиховом опадајућем низу, избором Pearson III расподеле, све године проучаваног низа су рангиране по њиховој водности, класификацијом по одређеним прощентима јављања. Тако су на Сави катастрофално сушне године са годиињнм протицајем мањнм од $1000 \mathrm{~m}^{3} / \mathrm{s}$, а катастрофално водне са Q већим од $2700 \mathrm{~m}^{3} / \mathrm{s}$. Како се и једна и друга година на Сави нису појавиле у инструменталном периоду, вероватноће су појава дужим од 100 година, нихова појава би могла да уследи негде у првом кварталу 21 века. Међутим, судећи по 150-годишњнм осматрањнма на Дунаву и на Сави, која у суштини прати режим Дунава, ове две нзузетно екстремне гоцине су се вероватно појавиле у периоду пре 1926. године.

Таб. 24. - Ранирање година по водности Саве код Сремске Митровице у периоду 1926-1985.
Tab.24. - A ranking years of their watery of the Sava river (Sremska Mitrovica) in the period 1926-1985.

Водност године	Протицај	Γ о д и н е	Epoj година
Катастрофално сушне	<1000		0
Веома сушне	1000-1150	1946, 1949	2
Сушне године	1151-1400	$\begin{aligned} & 1928,1935,1943,1945,1947,1950,1957 \\ & 1961,19071,1973,1975,1982,1983,1985 . \end{aligned}$	14
Средње водне године	1401-1750	$\begin{aligned} & 1927,1929,1930,1931,1932,1933,1934 \text {, } \\ & \text { 1938, 1939, 1942, 1948, 1951, 1952, 1953, } \\ & \text { 1954, 1956, 1958, 1959, 1963, 1964, 1966, } \\ & 1967.1968,1969,1972,1974,1976,1977, \\ & 1978,1979,1981,1984 . \end{aligned}$	32
Водне године	1751-2150	$\begin{aligned} & \text { 1926, 1936, 1941, 1944, 1960, 1962, } \\ & 1965,1980 . \end{aligned}$	8
Beoma водне	2151-2700	1937, 1940, 1955, 1970.	4
Катастрофалио водне	>2700		0

Нпр. на Дунаву је катастрофално водна била почетком овог века, а катастрофално сушна у прошлом веку. На Сави су веома сушне оне гоцине чији је протицај од $1000-1150 \mathrm{~m}^{3} / \mathrm{s}$, а веома водне године са Q од $2150-2700 \mathrm{~m}^{3} / \mathrm{s}$. Веома сушних је само цве (1946, 1949), а веома водних четири (1937, 1940, 1955 и 1970). Бројније од ових су сушне (14) и водне (8). Оне су са протицајем, прве од 1150-1400. а друге од $1750-2150 \mathrm{~m}^{3} / \mathrm{s}$. Нормӑлно, као и код других река у Србији, најбројније су године средње водностп (1400-1750 m² s), укупно 32. Оне се јавлају приближно сваке пруге гопнне, сушне сваке $4-5$ гоцине, веома сушне сваке 30-те године. Водне се појаве сваке 7 -8, а веома водне сваке 15-те године. Као што се види, на Сави не постоји синхронизованост у погледу појавливања година карактеристичне

водности. Hпр, сунннх је 14, а водннх 8, веома сушних 2, а веома вопинх 4. Мани број водиих надокнађен је већим бројем веома водних година. Зато се у наредном периоду може очекивати иа Сави појава веһег броја водних и веома сушних година.

На Сави је у 60-годиипњем перноду бпло 27 година са протнцајем већпм од просечне годнне, а 33 са маним оти цањем. Најводнија годнна по срепње годицњем протицају је 1937. ($\mathrm{Qs}=2560 \mathrm{~m}^{3} / \mathrm{s}$), затим 1955. ($2293 \mathrm{~m}^{3} / \mathrm{s}$), $1940\left(2232 \mathrm{~m}^{3} / \mathrm{s}\right)$ и 1970. ($2189 \mathrm{~m}^{3} / \mathrm{s}$). Године са најманнм протнцајем су 1949. ($1022 \mathrm{~m}^{3} / \mathrm{s}$) и 1946. ($1055 \mathrm{~m}^{3} / \mathrm{s}$). На Сави је укупно 10 годнна са протицајем мањим од $1300 \mathrm{~m}^{3} / \mathrm{s}$. Последње сушније гопине су 1982, 1983, 1985, 1987, 1988. и 1990. Мнмо обрађеног периода после 1985. године сушне су 1987. п 1988, а средње водне 1986. » 1989.

Честниа појављпвапь гоциниьих протицаја. - 3а изу чавање режима Саве, значајне су честине и трајане одређених протицаја. Према подацима нз таб. 25, на Сави су најучесталији протицаји у класи од $1500-1750 \mathrm{~m} / \mathrm{s}$, укупно 24 појаве ипи 40% од броја осмотреннх година. Затнм следе протицаји у класн од $1250-1500 \mathrm{~m}^{3} / \mathrm{s}$ са $26,7 \%$ појава и од 1000-1250 $\mathrm{m}^{3} / \mathrm{s}$ (10%). На Сави су много чешћи нюжи протицаји од просечног $1588 \mathrm{~m}^{3} / \mathrm{s}$ него внин. Укупан број појава изнад $1750 \mathrm{~m}^{3} / \mathrm{s}$ је 12 ирема 48 у нижим класама.

Таб. 25. - цестина појавьивана годииних протицаја Саве (Сремска Mитровица) у периоду 1926-1985.
Tab. 25. - Frequency of appearing of annual discharges of the Sava river (Sremska Mitrovica) in the period 1926-1985

Класа 1000-1250 1250-1500 1500-1750 1750-2000 2000-2250 2250-2500 2500-2750 Год.

Број	8	16	24	6	4	1	1	60
$\%$	13.3	26.7	40.0	10.0	6.6	1.7	1.7	100.0

За Саву као велику и пловну реку је веома битно да се проуче трајања водостаја п протицаја. Са аспекта давања прогноза и упозорења о појави пзузетно великих или малих вода, када су у питању нпр. корицћења њених вода или обављане пловндбе у оптималним условима, до највећег нзражаја цолазе подаци о трајаюнма протнцаја или водостаја.

Најмањн осмотрени протицај ($200 \mathrm{~m}^{3} / \mathrm{s}$) траје свнх 365 дана, нзнад $500 \mathrm{~m}^{3} / \mathrm{s}, 318$ дана, а преко $1000 \mathrm{~m}^{3} / \mathrm{s}$, просечно 237 дана у години.

Вероватноћа великнх вода. - Сава је река која протиче равннцом са малим падом, на су нзинвања вода из неног корита честа. Уз то, Сава је цо Сремске Митровице била успорена у природном режиму од високих водостаја Дунава, а тај успор је повећан утицајем XE "Бердап", па се високи водостајп при пстом протнцају чешће јавлају. Највећи протнцај на Сави је $6638 \mathrm{~m}^{3} / \mathrm{s}$, осмотрен је октобра 1974. године. То је нсториска велика вода, јер далеко премашује предходно појављене максималне воде. По рачуну вероватноће, то је 100-годишња велика вода (таб. 26). За њом дође вепика вода од $5703 \mathrm{~m}^{3} / \mathrm{s}$, која је забележена 1940. године, када су сличне велике воде биле на Дунаву н Тиси. Она је вероватноће 4%, нли вода која се појави једном у 25 година. У проучаваном 1926-1985. периоду, Сава је имала 10 година са Qmax већим од $5000 \mathrm{~m}^{3} / \mathrm{s}$. То су осим поменутих 1974. и 1940, још 1932, 1944, 1952, 1953, 1962, 1965, 1970.и 1981. Велике воде овог ранга се јављају просечно сваке шесте године. Последња таква година je 1981. ca $Q \max =5520 \mathrm{~m}^{3} / \mathrm{s}$.

Таб. 26. - Вероватноћа максималних вода на Сави (Сремска Митровица)
Tab. 26. - Probability of the maximal water of the Sava river (Sremska Mitrovica)

Beроватноһа	Година јављања	Qmax $\left(\mathrm{m}^{3} / \mathrm{s}\right) \mathrm{q} \mathrm{max}\left(1 / \mathrm{s} / \mathrm{km}^{2}\right)$	
0.1%	1000	8000	90.9
1.0%	100	6600	75
2.0%	50	6200	70.4
5.0%	20	5600	63.6
10.0%	10	5200	59.1

Временскп распоред великих вода усповлен је фронталним кишама и топљењем снега. Највећи број појава великих вода је у пролеће, у априлу и мају, укупно 21 случај, нли једна трећина свих осмотрених појава. Затим су то јесењи и зимски месеци, новембар и децембар, укупно 19 појава, п јануар, фебруар и март, такође са 19 појава. Велике

воде се не јавлају лети, па у месецима јуну, јулу, авгчсту и септембру нису забслежсне изузетно високе воде. Осим макснмалних протнцаја, на Сави су ироучени и максималнни водостаји, јер се због успора водостаји могу повишавати, без обзнра ца ли се новећава протнцај. Према рачуну вероватноће водостаја [Институт за водопрнвреду "J. Черни, 1978] максимално Н које се појави једном у 100 година је на коти 81,00 $\mathrm{m}, 50$-годишње на $80,70 \mathrm{~m}$.

Всроватноћа малих вода. - Мале воде на Сави дуже трају од великих. Маловоднн периоди могу да трају и до три месеца, када се обуставла пловндба, а ниво подземних вода у њеном прнобаљу с киме су оне у хидрауличној вези знатно снизн. Апсолутно најмањи протнцај на Сави је 200 $\mathrm{m}^{3} / \mathrm{s}$. Осмотрен је 5. 10. 1946. године. Њему је одговарао водостај од 0 cm . Изузетно мале воде на Сави су биле у периоду од 1943-1954, када је у свим тнм годинама мнннмалнн протицај бно између 200 и $300 \mathrm{~m}^{3} / \mathrm{s}$.

Мала вода од $200 \mathrm{~m}^{3} / \mathrm{s}$ је вероватноће појава једном у 60 годнна. Протицај оп $300 \mathrm{~m}^{3} / \mathrm{s}$ је вероватноће једном у 20 гоцина, $400 \mathrm{~m}^{3} / \mathrm{s}$ (16 годнна), $500 \mathrm{~m}^{3} / \mathrm{s}$ (5 годнна) итд. Миннмални водостаји углавном ирате миннмлне протицаје, мада то увек тако не мора да буде. На ово утичу промене корита реке, успоравање малих вода, или њнхово загушиване утицајем ледених брана. Стогодишњн ниски водостај је на коти $72,75 \mathrm{~m}, 50$-годишњи је на коти $72,80 \mathrm{~m}$. Осим малих вода везаних за дан у годннн, у водопривредној пракси се најчешће користе миннмалне воде трајања 30 дана, или минимални средње месечни протнцаји. Њнхова средња вредност за пернод је $520 \mathrm{~m}^{3} / \mathrm{s}$. Ако се и ове вредности изразе у виду вероватноће, онда је средње месечна минимална вода 95% обезбеђености око $250 \mathrm{~m}^{3} / \mathrm{s}$.

Мале воде на Сави се најчешће јављају у касно пето и почетком јесенн. Далеко највећи број минималннх вода је осмотрен у септембру (20) и октобру (17), укупно 61,6\% свих узорака, затнм је то месец август са 12 година малих вода, а онда јануар (5 појава).

Д $\mathbf{p} \boldsymbol{n} \mathbf{n}$ a

Дрина је највећа притока Саве ($\mathrm{F}=19570 \mathrm{~km}^{2}$, $\mathrm{Qs}=395$ $\mathrm{m}^{3} / \mathrm{s}$). Најцужа осматрања на Дрини су у Бајнној Башти ($\mathrm{F}=14797 \mathrm{~km}^{2}$, $\mathrm{Qs}=354 \mathrm{~m}^{3} / \mathrm{s}$). Формиран је низ од 60 година непрекидних осматрања и мерења у периоду 1926-1985. година. Спив Дрине је најпздашнијп међу другим већим

сливовнма дннарског планинског снстема који отичу ка Црном мору. Просечни специфични отнцај реке је $24,01 / \mathrm{s}^{2} / \mathrm{km}^{2}$; у најсушнијем месецу не паца испод $8,0 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$, а у највлажнијем је већи од $40,0 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$.

Срецье месечни протицаји реке су увек већи оя 120 $\mathrm{m}^{3} / \mathrm{s}$, а цостнжу вредност од преко $600 \mathrm{~m}^{3} / \mathrm{s}$ (амрил) Повећана отнцања су и другим пролетним месецима (мај, март), или јесеним (новембар, децембар), таб. 27.

Таб. 27. - Средни месечни и годишни протицаји Прине (Бајина Башта) у периоду 1926-1985.

Tab. 27. - Mean monthly and annual discharge of the Drina river (Bajina Basta) in the period 1926-1985.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Гoम.
Qs	350	358	461	602	594	345	193	120	130	239	414	435	354
Cv	0.53	0.52	0.38	0.30	0.33	0.29	0.41	0.42	0.57	0.77	0.53	0.49	0.20
O	186	186	175	181	196	100	79.1	50.4	74.1	184	219	213	70.8

Дрина је река са веома малим копебањем протицаја. Обиље краиких појава, скоро једна трећина површине слива је под карстом, већа надморска висина слива, мало испаравање, повећане падавине, нарочито снежне, условльавају равномерно годинње отицање, скоро у целом њеном сливу. Стога је Дрина са мапим коефицијентима варијације протицаја. У годишној вредности $C v$ је 0,20 , и то у свим профилима од њеног постанка у Шћепан Пољу цо ушћа у Саву. У Зворнику је $\mathrm{Cv}=0,21$, Бајиној Башти 0,20, Бастасима 0,20. За разпику од годинњих коефицијената варијације, месечни су нешто израж енији и већи су од истих вредности на Сави или Дунаву. Октобарски коефицијенат варнјације је 0.77 , септембарски 0,57 , фебруарски 0,52. Најмањи су у јуну, мају и априлу, и крећу се од 0,29-0,33. Повећани коефицијенти варијације су још у јесењо-знмским месецима. Иначе за Дрину не важи правило да највећи коефицијенти варијације прате најмање протииаје. Најмане средье месечно Q је у августу ($120 \mathrm{~m}^{3} / \mathrm{s}$) sa $C v=0,42$, док је минимални коефицијенат варијације у јуну (0,29), када је $\mathrm{Qs}=345 \mathrm{~m}^{3} / \mathrm{s}$. Према класификацији река по колебањнма протицаја [Оцоколл市 М. 1991], Дрина је сврстана у реке са малим променама протицаја, Cv 0,25 , то је I група поменуте класификације, у коју јои долазе Дунав, Сава, Драва, Купа, Уна, Врбас, Босна, Пнва, Тара, Лим, Морача.

Копебана протицаја Пинне могу ца се нзразе и номоhy станमардне девијације (о). која је, према поцацима пз таб. 27, највећа у време највеһих протицаја (пролеһе), када чини око 30% месеиних протицаја, док се тај проценат mobehава у петио-јесеним месенима и ソвек је већи ои 50%. Према томе, најповолинји иернопи за коришћене вода Дрине оу у пропене и зиму.

Цикличност отицапа у перноду 1926-1985. година. Aко се тестирају 10-гоцинни низови периода 1926-1985. и утврде מихове међусобне разлике, резултати показују њихово незнатно одступање, како одиосом између пеценнја, тако и односом према вншегодишњој вредности. Само друга и трена деценнја нмају нешто већа одступаюа од 5%, док остаí пмају отнцање прнближно вниегодншьем перноду. И овн резуитати потврђују да вепике ретенанје воде у красу и снегу ныају велику улогу у формирану веома повопног режима Дрине.

U 20-годныни перноди отинана се маио pasmикују; бројне врепности су им веома блиске отицану периода 1926-1985. Мстраживана цикличности отинаьа Дрние анализирана је и помоћу сумарне криве модулннх одступања гоцниних протнцаја оп просечне врецности и то у профнлу 3ворник. У обрађнваном периоду, нздвојена су два цинлуса, први од 1926-1960. н други 1960-1982. Внажнин нернод I מикпуса је оп 1926-1944. године, а суинији од 1945-1960. године. Виажнији период II циклуса је од 1961-1982. гоцине одакле далье настаје нешто сушнијн пернод. Поређенем цнктинности отицана Дрине са реком Савом, утврђена је ндентична веза у поглецу појављивана сушних н воцннх пернода. Ако реконструннемо те периоде за Дрину уназад, нир. цо 1856. године од каца постоје осматрања на Сави у Славонском Броцу [Hнститут за водопривреду "Ј. Черни", 1974], нздвојена су још два циклуса, један од 1856-1882. и другн од 1883-1925. Први је краћег трајања од другог, сушннјн пернод првог циклуса је од 1856-1868. године, а влажнијп од 1869 - 1882 ; код цругог циклуса, суинији пернод је знатно краћег трајања (1883-1893) од влажнијею (1894-1925) .

Класпфикацпја година ло водности. - У изучаваном перноду, на Дрини је бнло прибпижно исти број гоцииа чије је отицање мање или веће оц отицана просечне гоцине (33:27). Ако све године рангирамо по карактернстнкама нихове водности, највнше је срепье воцних година (32) са протнцајем од $300-400 \mathrm{~m}^{3} / \mathrm{s}$, koje се јавлају просечно сваке друге roцине. Затим следе сушне (13) и водне године (11). Сушне годнне су са протицајем од $250-300 \mathrm{~m}^{3} / \mathrm{s}$, а водне од $400-500 \mathrm{~m}^{3} / \mathrm{s}$.

Само је по две веома сушне ($230-250 \mathrm{~m}^{3} / \mathrm{s}$) и веома водне ($500-600 \mathrm{~m}^{3} / \mathrm{s}$). Веома сушне су 1982. и 1983. а веома водне 1937. и 1955. година. Сушне и водне године се јављају просечно сваке 5-6 годинс, а веома водне и веома сушне сваке 30-те године. Катастрофално сушна и катастрофално водна година на Дрини се још нису појавиле у осмотреном периоду. Протицај тих гоцнна је испод $230 \mathrm{~m}^{3} / \mathrm{s}$, односно изнад $600 \mathrm{~m}^{3} / \mathrm{s}$ (таб. 28).

Таб. 28. - Класификација година по водности на Дрини (Бајura Баuтa) y nepuody 1926-1985.
Tab. 28. - Clasification of years in their watery of the Drina river (Bajina Bašta) in the period 1926-1985.

Водност године	Протицај	Γ о д и н е	Epoj година
Катастрофално сушне	<230		0
Веома сушне	230-250	1982, 1983.	2
Сушне	250-300	$\begin{aligned} & 1928,1932,1943,1946,1947,1948,1949 \text {, } \\ & 1953,1954,1957,1961,1973,1975 . \end{aligned}$	13
Средње водне	300-400	$\begin{aligned} & 1926,1930,1931,1933,1934,1935,1936 \text {, } \\ & \text { 1938, 1939, 1942, 1945, 1950, 1951, 1956, } \\ & 1958,1959,1960,1962,1964,1965,1966 \text {, } \\ & 1967,1968,1969,1971,1972,1974,1976 \text {, } \\ & 1977,1981,1984,1985 . \end{aligned}$	32
Водне	400-500	$\begin{aligned} & 1927,1929,1940,1941,1944,1952,1963, \\ & 1970,1978,1979,1980 . \end{aligned}$	11
Beoma водне	500-600	1937, 1955.	2
Катастрофално водне	>600		0

Најводнија година на Дрини је 1937, чији је средње годишњи протицај $546 \mathrm{~m}^{3} / \mathrm{s}$. За њом дође 1955. са $\mathrm{Qs}=518$ $\mathrm{m}^{3} / \mathrm{s}$ и 1970. са $\mathrm{Qs}=496 \mathrm{~m}^{3} / \mathrm{s}$ На Дринн је укупно 13 година са протнцајем већим од $400 \mathrm{~m}^{3} / \mathrm{s}$, а 16 година са Qs испод $300 \mathrm{~m}^{3} / \mathrm{s}$.

Hajсушнија је 1983. са $\mathrm{Qs}=246 \mathrm{~m}^{3} / \mathrm{s}$ н 1982. са $\mathrm{Qs}=247$ $\mathrm{m}^{3} / \mathrm{s}$. Као што се видн, сушне године на Дриии временски не прате исти распоред година на Лиму који је њена притока, нли на Западној Морави и Ибру на којнма су најсушније године у периоду 1943-1953. година. Видимо, да на режнм Дрине више утичу Пива и Тара, него низводне притоке.

Честина и трајане годиниьих протнцаја. - Најучесталији средъе годиннн протицајп су у кпаси од 275-300 $\mathrm{m}^{3} / \mathrm{s}$ (10) и $375-400 \mathrm{~m}^{3} / \mathrm{s}$ (10). Чести су протицаји и у класн од $325-350 \mathrm{~m}^{3} / \mathrm{s}$ (9) и $300-325 \mathrm{~m}^{3} / \mathrm{s}$ (7). Приблинно половина појава је у класп од $275-400 \mathrm{~m}^{3} / \mathrm{s}$

Протицаји Дрнне се мало мешју по времену. Да је то тако, показују трајана протнцаја. Изнад $100 \mathrm{~m}^{3} / \mathrm{s}$, протицаји трају годишње просечно 340 дана; преко $200 \mathrm{~m}^{3} / \mathrm{s} 260$ дана, $300 \mathrm{~m}^{3} / \mathrm{s} 190,400 \mathrm{~m}^{3} / \mathrm{s} 140$ н пзнад $500 \mathrm{~m}^{3} / \mathrm{s} 100$ дана.

Мале воде на Дрини имају релативно веће вредности него на другим рекама. Најмана вода је $18,0 \mathrm{~m}^{3} / \mathrm{s}$, забележена је 5. 07. 1970. године: затим $31,5 \mathrm{~m}^{3} / \mathrm{s}$ (31. 07. 1979). Ово су редуковане мале воде, јер су под утицајем раца ХЕ "Бајина Башта", која је почела са радом после 1967. године. Иначе, у непоремећеном режиму, најмана вода на Дрини је $38,6 \mathrm{~m}^{3} / \mathrm{s}$ (27. 01. 1954). Мале воде се најчешће јављају у касно лето или јесен, а ређе у осталим месецима године.

Вероватноћа великих вода. - Највећа вода на Принн бнла је 20. XII. 1968, године, када је измерено $5340 \mathrm{~m}^{3} / \mathrm{s}$. Затим је то 1979. године када је 18. 11. протицало коритом реке $4300 \mathrm{~m}^{3} / \mathrm{s}$. Ово су максималне воде у инструменталном периоду. Међутим, према ранијпм забелешкама [Јевђеви $\overline{\text { п }}$ B. 1956], на Дрини су биле и веће воде. Тако је 1896. године на Дрини и њеним притокама била историска велика вода. Она је прелила познати камени мост у Вншеграду, који је стар око 500 година. Народна предана кажу да он није преливан пре 1896. године. Тада су у допини Дрине и Лима уннштена многа насепьа, нпр. Рудо, Љубовпја. Моделским испитивањима, утврђено је, да је велика вода из новембра 1896. године величине око $10400 \mathrm{~m}^{3} / \mathrm{s}$. Ова вода проузрокована је стицајем више околности. Пре кише пао је велики снег. Изненадном појавом јужног ветра уз топле ваздушне масе са јаким кишама у целом сливу, условили су нагло топвење снега и комбиновану концентрацију великих вода у кориту Дрине и њеним притокама Пиви, Тари, Лиму, Ћехотини. Према рачуну вероватноће у перноду 1926-1985. (Pearson III raspodela), ова вода је појаве једном у 1000 година. Осмотрена највећа вода у

овом веку од $5340 \mathrm{~m}^{3} / \mathrm{s}$ је учесталости појава једном у 100 година. Велнка вода од $2500 \mathrm{~m}^{3} / \mathrm{s}$ је честине појава једном у 8-10 година. Последња већа вода на Дрини била је 18. 11. 1979. године ($4300 \mathrm{~m}^{3} / \mathrm{s}$). Она је учесталости појава једном у 40 година ($2,5 \%$). Најучесталије велике воде на Дрини су у пролеће и касну јесен. Април, мај, новембар н децембар су месеци са највећом честином вепнких вода, скоро 70% свих појавлених случајева. Како су последње две велике воде биле у јесен, наредну бн могли да очекујемо у пролеће. Такву последюу велнку воду имали смо пре 20 година, $2390 \mathrm{~m}^{3} / \mathrm{s}$ (10 . 04. 1970). Међутим, на врхове поплавних таласа утичу и изграђене хидроцентрале на Дрнни, Зворник, Бајина Башта и Вншеград, а делимично и хндроелектране у слнву Лима (Потпећ), Сјеница (Увац) и Мратиње (Пива).

л и м

Лим је транзитна река Србије. Извире у Албанији (Проклетије), тече кроз Црну Гору, мањим током кроз Србију и Босну. Улива се у Дрину код Рудог са површином слива од $5717 \mathrm{~km}^{2}$ и дужнном тока од 197 km . Просечан протнцај реке је $108 \mathrm{~m}^{3} / \mathrm{s}$ (ушће), у Прибоју је $90,0 \mathrm{~m}^{3} / \mathrm{s}$, у Пријепољу $81,1 \mathrm{~m}^{3} / \mathrm{s}$. После истека из Плавског језера, просечан протицај Лима је $21,3 \mathrm{~m}^{3} / \mathrm{s}$. Лим је са релативно дугим хидролошким осматрањима и мерењнма. Најдужа су у Пријепољу, где је формиран 61-годишњн низ пернода 1925-1985. година. Површина слива реке у профилу истоимене станице је $3160 \mathrm{~km}^{2}$.

Лим је река са већим протицајем, јер чини $27,3 \%$ вода Дрине. Специфична издашност слива је $25,7 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$, и по томе Лим предњачи у односу на друге реке Србије. Нпр. издашност река централне и јужне Србије је око $5,0 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$. Распоред отицања у сливу условљен је распоредом падавина, које су највеће у зимској половини године (утицај медитеранског плувиометриског режима). Као резултат тога п месечни протнцаји су највећи у хладнијој половини гощине. Мај, април и март су са највећим отицањем. Мај је са просечним протицајем од преко $150 \mathrm{~m}^{3} / \mathrm{s}$ април $142 \mathrm{~m}^{3} / \mathrm{s}$ и март 103 $\mathrm{m}^{3} / \mathrm{s}$. Идући ка дету ове вредности нагло опадају, па је август са најмањим протнцајем, свега $24,8 \mathrm{~m}^{3} / \mathrm{s}$. После августа, мање протицаје пмају септембар ($28,4 \mathrm{~m}^{3} / \mathrm{s}$), јулии (43,9 $\mathrm{m}^{3} / \mathrm{s}$ и октобар ($53,5 \mathrm{~m}^{3} / \mathrm{s}$), таб. 29.

Таб. 29. - Средъе месеиии и годииьи протицаји Пима (Пријеnone) y nepuody 1925-1985.

Tab. 29. - Mean monthly and annual discharge of the Lim river (Prijepolje) in the period 1925-1985

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год.
Qs	74.7	81.4	103.0	142.0	151.0	86.1	43.9	24.8	28.4	53.5	89.1	95.6	81.1
CV	0.59	0.61	0.40	0.30	0.33	0.49	0.42	0.40	0.62	0.89	0.64	0.56	0.23
σ	44.0	49.6	41.2	42.6	49.8	42.2	18.4	9.9	17.6	47.6	57.0	53.5	18.6

Лим као највећа притока Дрине има мала колебања протицаја, што је условљено внсином слива (мања испаравања), веһом залихом вода у снежном покривачу, који се постепено отапа на високим планинама до краја пропећа, и посебно утицајем краса, који је у сливу ове реке заступъен са 34%. Гоцинињи коефицијент варијације је 0,23 , приближно исто као на Дунаву, и по томе се Пим сврстава у реке малог колебања протицаја. Највећа су у октобру, новембру и јануару, а најмања у пролеће. У односу на оптнцања, која су најмања у августу и септембру, макснмапно Cv је померено на октобар и новембар, каца је коефицијент варнјације 0,89 и 0,64 . Најмање Cv је у апрнлу $(0,30)$, мају $(0,34)$ и марту $(0,40)$ Колебана месечних и годинњих протицаја у односу на вишегодишњу вредност су према подацима стандардне девијације (таб. 29) највећа у време највећих вода; међутим, нзражена у процентнма, највећа су нормално за време најмањнх воца. Средње месечни октобарски протицај приближан је стандардној девијацијн, док у марту чини 40% месечног протицаја. У годишњој врепности $\sigma=18,6 \mathrm{~m}^{3} / \mathrm{s}$, тј. за оволику вредност годишњи протипаји у низу од 61 године могу да варирају од просечне винегодишње вредности

Цикличност перноца 1925-1985. година. - Анапогно предходним аналнзама, и на Лиму су сви десетогодииньи просеци тестирани поређењем са одговарајућом вишегодишњом вредношћу. Само су три деценије поменутог периода цикличне, прва, друга и пета, а у остапмм постоје одступања која се крећу од 10-12\%. Деценија 1945-1954. суцнија је за 10%, док је наредна 1955-1964. воднија за 12%. Шеста цеценнја воцнија је за 10%. Упоређујућн на псти начин 20 -годишње периоде, уочено је да нема битних разпика између три таква периода, како између самих њих, тако и у односу на нормалну

вредност. Првн период 1925-1944. има $\mathrm{Qs}=81,1 \mathrm{~m}^{3} / \mathrm{s}$, други (1945-1964), Qs=81,6 $\mathrm{m}^{3} / \mathrm{s}$ п трећи (1965-1985), $Q s=84,4 \mathrm{~m}^{3} / \mathrm{s}$. Према томе, за коришћење вода Лима, неопходне су хидролошке подлоге које уклучују низове од најмање 20 година осматрања, јер три изабрана таква низа дају вредности које су најприближније нормалној вишегодишњој.

И неке цруге статистичке анализе такође потврђују цикличност периода 1925-1985. година. Тако је средње квадратна грешка вишегодишњег отнцања $3,0 \%$, а грешка коефицијента варијације $9,3 \%$. У погледу распореда отицања унутар 61-годишнег периода, постоје разлике између Лима., Западне Мораве, Ибра н неких других околних река. Краћи изабрани периодн се не понашају у истом односу; нпр, прва цеценија на Лиму је циклична, док је на Западној Морави и Ибру значајно сушнија, што зависи од више фактора, највише од распореда и количнне падавина, које се такође понашају по неким цикличним појавама, али и од врсте речног режима, Лим је са нивално-плувијалним, а Западна Морава и Ибар са плувијо-нивалним режимом.

Класпфнкација хндролошких година. - И на Лиму постоји правилан распоред година по водности, јер је у посматраном перноду бнло 29 средње водних, 13 сушних, 14 водних, 2 веома сушне и 3 веома водне. Критеријум за овако дефиннсање хидролошке године је следећа класифнкација:

катастрофално сушна	$\mathrm{Q}<42,5 \mathrm{~m}^{3} / \mathrm{s}$
веома сушна	$\mathrm{Q}=42,5-52,5$
сушна	$\mathrm{Q}=52,6-70,0$
средње водна годнн	$\mathrm{Q}=70,1-90,0$
водна	$\mathrm{Q}=90,1-120$
ма водна	$Q=120-140$
атастрофално водн	Q > 140

У веома сушне године спадају 1943. и 1983, а веома водне су 1939, 1955. и 1979. Највећи број година средње водности је правилно распоређен у низу 1925-1985, 15 година је у првој, а 14 у другој половини ннза. Године средње водности се јавлају просечно сваке цруге године, док су веома сушне и веома водне ретке учесталости. Оне се просечно јављају сваке 20 или 30 годнне.

Узимајућн у аналнзу средње годишње протнцаје, најводнија година је 1955. ($134 \mathrm{~m}^{3} / \mathrm{s}$), а за њом следе: 1929. ($129 \mathrm{~m}^{3} / \mathrm{s}$) п 1979 . ($122 \mathrm{~m}^{3} / \mathrm{s}$). На Лиму је укупно 8 година са средње годишюим протицајем већим од $100 \mathrm{~m}^{3} / \mathrm{s}$, а 7 са

мањим од $60.0 \mathrm{~m}^{3} / \mathrm{s}$. И на Лиму је израженији сунни период био од 1945-1954, када су све године имале отицање знатно мање од стандардие вредности. Средње годишњи протицај тог сушног 10 -годишнег пернода је $72,7 \mathrm{~m}^{3} / \mathrm{s}$, који је маловоднији за 10%. Најсуннија година периода је 1943, у којој је средне гоцишњь протицај далеко нижи од осталих гоцина. Тада је Лимом у Пријепољу протекло само $43,6 \mathrm{~m}^{3} / \mathrm{s}$, мање zа 44%. После ње је 1983. година са протицајем од $51,4 \mathrm{~m}^{3} / \mathrm{s}$, и 1982. са $52,9 \mathrm{~m}^{3} / \mathrm{s}$. Сушна је и 1949 . са $\mathrm{Qs}=57,2 \mathrm{~m}^{3} / \mathrm{s}$. и 1975 . са Qs=58,7 $\mathrm{m}^{3} / \mathrm{s}$. Влажнијн период на Лиму је био у четвртој деценији, или тачније од 1955-1966, када су скоро све године тог 12 -годишнег пернода имале отицање веће од стандардне вишегодншне вредности. Просек тог пернода је $\mathrm{Qs}=90,3 \mathrm{~m}^{3} / \mathrm{s}$. Године после 1985. су чешће сушне него водне; 1986. је воднија за $6,6 \%$, а 1987. и 1988. су сушније за 17% и 19%.

Учесталост годиниих протнцаја и пихово трајанье

 - Годишњи протицаји на Лиму чешће се јављају у вишим него нижим класама. Испод просечног протицаја ($81,1 \mathrm{~m}^{3} / \mathrm{s}$), у Пријепољу је 16 година, а изнад 46 година. Најчешћи годиињн протицаји су у класн од $70-80 \mathrm{~m}^{3} / \mathrm{s}$, укупно 20 (33%) година, а потом од $60-70 \mathrm{~m}^{3} / \mathrm{s}$ (11) н $90-100 \mathrm{~m}^{3} / \mathrm{s}$ (10). Само је по једна година у највншој ктаси ($130-140 \mathrm{~m}^{3} / \mathrm{s}$) и најнижој (40-50 $\mathrm{m}^{3} / \mathrm{s}$), (таб. 30).Таб. 30. - Број година за одређене жласе протицаја Лима у Пријепову (1925-1985).
Tab. 30. - Number of years for definited class of discharge of the Lim river (Prijepolje) in the period 1925-1985.

Класа	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$	$100-110$	$110-120$	$120-130$	$130-140$
Број	1	4	11	20	7	10	3	2	2	1
$\%$	1.6	6.6	18.0	32.8	11.4	16.4	5.0	3.3	3.3	1.6

За режим Лима значајно је и то што одређени протицаји трају временски дуже него код других река. То омогућавају снежне падавине, богата издан (крас) и мало испаравање. Дневни протицаји изнад вишегодишњег трају у години 160 (43,8\%) дана, а испод $15,0 \mathrm{~m}^{3} / \mathrm{s}$ (средње годишња мала вода) 360 дана. Протицаји изнад $100 \mathrm{~m}^{3} / \mathrm{s}$ трају око 110 дана, а изнац $50,0 \mathrm{~m}^{3} / \mathrm{s} 240$ дана. Вода трајања три месеца је $113 \mathrm{~m}^{3} / \mathrm{s}$, шест месеци $68,0 \mathrm{~m}^{3} / \mathrm{s}$ и девет месеци $39,0 \mathrm{~m}^{3} / \mathrm{s}$.

Најмана вода на Лиму је $7,40 \mathrm{~m}^{3} / \mathrm{s}$; осмотрена је 1978 . године. По честнни јављања је пзузетно мала воца, јер су све друге мале воде знатно веће оп ше. Следећа година по величини минималног протицаја је 1985 . $\left(10,2 \mathrm{~m}^{3} / \mathrm{s}\right)$ н 1946. $\left(10,8 \mathrm{~m}^{3} / \mathrm{s}\right)$. Вероватноћа протицаја од $7,40 \mathrm{~m}^{3} / \mathrm{s}$ је $99,8 \%$, из чега пронзилази да је то нсториски мала вода, н ако се, како смо раније видепи, историска срещње годинња вода на Лиму ($\mathrm{Q}<42,5 \mathrm{~m}^{3} / \mathrm{s}$) није појавила у проучаваном периоду. Најучесталнје мале воде су у класи од $12,5-15,0 \mathrm{~m}^{3} / \mathrm{s}$, у којој је 25 година, а затим од $15-17,5 \mathrm{~m}^{3} / \mathrm{s}$ са 14 година. Занимьнво је, да је у највлажнијој 1955. години, минимални годишни протицај био $42,9 \mathrm{~m}^{3} / \mathrm{s}$, приближно колико је био средње годиињи протицај најсушннје 1943. ($43,6 \mathrm{~m}^{3} / \mathrm{s}$). Мале воде се ретко јављају у зиму и пролеће, а веома често крајем лета и у јесен. Септембар је са 19 година појава изузетно малих вода, а потом август и октобар са по 15 појава. У 61-годишнем периоду, мале воде нису забележене од марта до јуна, а у децембру, јануару и фебруару је 2-3 такве појаве.

Максималне воде на Лиму изазивају честе поводне и последица су јаких фронталних кнша комбинованих са топленем снега у пролеће. Највећа вода на Лиму је била 1979. године, када је у Пријеполу измерено $1236 \mathrm{~m}^{3} / \mathrm{s}$. И ова вода се убраја у историске макснмалне воде, јер је далеко већа оп раније појављених у оквиру 61-годишњег осмотреног периода. Врло велика вода је била 1927. Тада је коритом Лима текло $1080 \mathrm{~m}^{3} / \mathrm{s}$, а забележено је укупно 14 година са Qmax већим од $500 \mathrm{~m}^{3} / \mathrm{s}$

Велике воде на Пиму се најчешће јавлају у децембру, априлу, марту и новембру. Скоро једна трећина појава великих вода је у пролеће. Средња вепика вода на Лиму је $464 \mathrm{~m}^{3} / \mathrm{s}$ са коефицијентом варијације од 0,42 , који је скоро два пута већи од коефицијента варијације средње годиињих вода.

В елика Морава

Велика Морава је највећа домаћа река Републнке Cp^{-} бије. Њен пространи слив у целини узев, простире се од најисточнијих, најјужнијих и најзападнијих граница Републике. Заузнма 43% површине њене територије. Повриина слива Велике Мораве је $37444 \mathrm{~km}^{2}$ са средње надморском висином слива од 622 m . Међутим, после превођења Језаве, повриина слива повећана је на око $38000 \mathrm{~km}^{2}$. Вепика Морава је средње нздашна река наше земље. Водопривредни проблеми у њеном

сливу су бројни и разноврсни. На неној територији живело је око 3,5 милнона становннка (иосле пописа из 1981) са густином насељености већом од иросека за землу (87 становника/km²).

у профнлу Љубичевскн Мост којн је обрађен у овом раду, повриниа слива Велике Мораве је $37320 \mathrm{~km}^{2}$, дуж нна тока 180 km , средња надморска виснна слива 622 m . Хидролошки низови на Великој Морави формирани су оц 1931. до заклучно са 1990. годином. Просечан протицај тог периода је $238 \mathrm{~m}^{3} / \mathrm{s}$, са специфичннм отицајем од $6,38 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$. Ова количнна бнла бп доволна да задоволи најосновније потребе становниитва у водн. Међутим, њнхов распоред у току године је веома неповолан (таб. 31). Највећи део те воде, око 80%, протекне Моравом у виду поплавних таласа, најчешће у периоду март-мај. Макснмални протицаји су достигли вредност од преко $2300 \mathrm{~m}^{3} / \mathrm{s}$. Један од најтежих проблема у сливу је појава поплава. Од свих елементарних непогода последњнх година, поплаве су остављале најтеже последице.

Таб. 31. - Средъе месечни и годишни протицаји Вепике Мораве (љубичевски Мост) у периоду 1931-1990.

Tab. 31. - Mean monthly and annual discharge of the Velika Morava river (Ljubičevski Most) in the period 1931-1990.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	ГOII.
Qs	241	359	446	426	347	247	153	94	88.7	104	150	202	238
CV	0.60	0.60	0.48	0.53	0.55	0.55	0.61	0.77	0.68	0.90	0.81	0.79	0.30
O	145.0	215.0	214.0	226.0	191.0	135.0	93.3	72.4	60.3	93.6	121.0	160.0	71.4

Уз неповољан временски распоред вода, надовезује се и неједнак просторни и висински. Познате хидролошки аридне области су у Шумаднји, јужној Србији, Косову, где је специфични отицај по правилу око $5,01 / \mathrm{s} / \mathrm{km}^{2}$, док су нешто повећана отнцања у Понишављу, источној Србији и деловима југозападне Србије који припадају сливу Велике Мораве. Ту је специфични отицај око $10 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$. О висинском распореду вода може се исто тако рећи да је неповољьн, и да је у суштнни асиметричан. Изнад средње надморске висине слива (622 m), образује се око $170 \mathrm{~m}^{3} / \mathrm{s}$ (71%) вода, испод Hsr, $\mathrm{Qi}=69$ $\mathrm{m}^{3} / \mathrm{s}$ (29\%). Висински коефицијент асиметрије протицаја је

Вепика Морава је река са највећим колебањима протнцаја. Годицњи коефицијент варијације предначи у односу на друге веће реке Србије. Сава У Сремској Митровнци има $\mathrm{Cv}=0,20$, Дрина 0,20 , Лим 0,23 , а Велика Морава 0.30. То условлава континенталии режим падавина, велико нспараване и плувио-нивални режнм Велике Мораве, али и већина нених притока које су са високим вредностима коефицијената варијације, нпр. Лепеница има $\mathbf{C v}=0,58$. Месечни коефнцијенти варијације протицаја су највећи у октобру (0,90), а најмањи у марту $(0,48)$. Они су у супротности са највећнм н најманим протицајем, који су у пролеће (март, април) и лето (август, септем бар).

И променливост протнцаја према просечној вредности је велика. Стандардна девијација се у појединим деловима године приближава месечним вредностима протицаја, нпр. у октобру, новембру и децембру. $И$ ако је највећа у пролећним месецима, ипак је она ту процентуално мања у односу на летњо-јесење месеце. У годншњој вредности, стандардна девнјација је $71,4 \mathrm{~m}^{3} / \mathrm{s}$. Овај се податак мора имати у виду ако се воде Велике Мораве користе за водоснабдеване п хидроенергетско искоришћавање, јер стандардна девнјација чини 30% просечне годишње вредности.

Цнкличност отнцаша пернода 1931-1990. гопина. -

 Због честих и наглих промена протицја, постоје битније разлике између појепиних периода унутар вншегодишнег. Просечан протицај обрађеног периода је $238 \mathrm{~m}^{3} / \mathrm{s}$, периода 1951-1980. године $257 \mathrm{~m}^{3} / \mathrm{s}$, п 1951-1990. године $247 \mathrm{~m}^{3} / \mathrm{s}$. Осим утицаја распореца пацавина и других физнчко-географских фактора слива, на ове разлике утичу и промене климатских карактеристика, нпр. у последьих 20-25 година падавине су наглашене на летьу половину године, када је испаравање велико, а умањено отицање у зимској половини године, када је оно највеће.Десетогодишњи периоди Велике Мораве знатно одступају, како односом између њих самих, тако и према стандардној вредности. У већини деценнја, отицања су значајно већа или мања од просека (таб.32). Прва н друга деценија имају приблнжно нсто отицање, које се од просека разликује за око $-4,0 \%$, док је, међутим, трећа деценија знатно воднија, прнближно 15%, као и шеста (1981-1990) са одступањем од $-8,4 \%$. И 20-годишњи периоди на Велнкој Морави не морају увек да буду мерило оцене режима реке, јер се и ту јављају веће разлике. Нпр. период 1951-1970. је знатно воднији, док су друга два периода са мањнм одступањима.

Таб. 32. - Одступана 10-ьодииньих и 20-ъодииних низова од вишегодишнег просека.
Tab. 32. - Deviation 10 and 20-yearly series of many yearly averages.

Деценија	Qs	DQ(\%)	Деценија	Qs	DQ (\%)	20 година	Qs	DQ (\%)
$1931-1940$	229	-3.8	$1961-1970$	244	2.5	$1931-1950$	229	-4.0
$1941-1950$	228	-4.2	$1971-1980$	253	6.3	$1951-1970$	259	8.6
$1951-1960$	273	14.7	$1981-1990$	218	-8.4	$1971-1990$	236	-1.0

Као закључак могао би да следи да све низове на станицама Велнке Мораве и њеним прнтокама треба тестирати и утврдити њихову меродавност, како би се донела оцена, да ли они могу да буду употребљени за проучавање режима реке, или коришћене таквих података у решавању бројних водопривредних проблема у сливу Велике Мораве и њеним притокама.

Ако оценимо укупну репрезентативност низа 19311990. година применом ранијих датих метода, нпр. помоћу средње квадратне грешке вишегодишњег отнцања која износи $3,8 \%$ и грешке коефицијента варијације чија је вредност $9,5 \%$, онда можемо да заклучнмо да обе вредности леже у границама дозволених одступања.

Класнфикација година по водности. - Као и за предходне реке, и за Велику Мораву су све године периода 1931-1990. тестиране и утврђена њихова водност, примењујући исти поступак као за Дунав и друге реке. Према тој анализн, на Великој Морави је највећи број година средье водности (31), чији су се протицаји кретали у границама од 176-275 $\mathrm{m}^{3} / \mathrm{s}$ (таб. 33). Свака друга година је у просеку средне водна, што се поклапа са распоредом отицања на већим рекама у Србији (Сава, Дрина, Лим). После година средње водности, најбројније су водне године са протицајем од $276-375 \mathrm{~m}^{3} / \mathrm{s}$, укупно 16, према 8 сушних (136-175 $\left.\mathrm{m}^{3} / \mathrm{s}\right)$. Веома водне ($376-525 \mathrm{~m}^{3} / \mathrm{s}$) п веома сушне ($1126-135 \mathrm{~m}^{3} / \mathrm{s}$) су у приближно нстом оцносу (3:2). Катастрофално сушна са $Q<125 \mathrm{~m}^{3} / \mathrm{s}$ и катастрофално водна ($>525 \mathrm{~m}^{3} / \mathrm{s}$) се нису појавиле у инструменталном периоду, маца је 1955. са $\mathrm{Qs}=515 \mathrm{~m}^{3} / \mathrm{s}$ на граници између веома водне и катастрофално водне године. С обзиром на већу заступљеност водних у односу на сушне године, чији је распоред сконцентрисан на период 1940-1984.

године у наредним годинама могли би да очекујемо даљу појаву сушних година, које је потврђено са већим бројем маловоднијпх година од 1985-1990. године.

Таб. 33. - Ранирање ъодина по водности Benике Мораве (љубичевски Мост) у периоду 1931-1990.
Tab. 33. - A ranking of the years in their watery of the Velika Morava river (Ljubičevski most) in the period 1931-1990.

Водност године	Протицај	Г о д и н е	Број година
Катастрофално сушне	<125		0
Веома сушне	126-135	1933, 1943.	2
Сушне	136-175	$\begin{aligned} & \text { 19234, 1939, 1945, 1949, 1950, 1951, } \\ & \text { 1968, 1983. } \end{aligned}$	8
Средње Водне године	176-275	$\begin{aligned} & 1932,1935,1936,1938,1946,1947,1952 \text {, } \\ & \text { 1953, 1957, 1959, 1960, 1961, 1964, 1965, } \\ & \text { 1966, 1967,1969,1971,1972,1973,1974, } \\ & \text { 1977,1978,1979,1982, 1985, 1986, 1987, } \\ & 1988,1989,1990 . \end{aligned}$	31
Водне године	276-375	1940, 1941, 1942, 1944, 1948, 1954, 1956, 1958, 1962, 1963, 1970, 1975, 1976, 1980, 1981, 1984.	16
Веома водне	376-525	1937, 1955, 1956.	3
Катастрофално водне	>525		0

По средње годишьем протицају најводнија година је, као што је наведено 1955. ($\mathrm{Qs}=515 \mathrm{~m}^{3} / \mathrm{s}$), а за њом следе 1937. ($427 \mathrm{~m}^{3} / \mathrm{s}$), 1956. ($371 \mathrm{~m}^{3} / \mathrm{s}$), 1944. ($356 \mathrm{~m}^{3} / \mathrm{s}$), 1970. (347 $\mathrm{m}^{3} / \mathrm{s}$). После 1980. године на Великој Морави нису забележене године са протицајем већим од $300 \mathrm{~m}^{3} / \mathrm{s}$, мада је у 60 -

годишњем периоду било 12 таквих година. Оне су углавном биле распоређене на период пре 1964. Година са најманнм протицајем је 1943. ($131 \mathrm{~m}^{3} / \mathrm{s}$), затим 1933. ($135 \mathrm{~m}^{3} / \mathrm{s}$) и 1950. (136 $\mathrm{m}^{3} / \mathrm{s}$). На Великој Морави је било укупно 20 година са протицајем мањим од $200 \mathrm{~m}^{3} / \mathrm{s}$. Поређенем распореда отицања Велике Мораве са другим рекама у Србнји, постоје разлике у томе. На Сави су веома сушне 1946. и 1949, на Дрини 1982 1983, а на Великој Морави 1933, 1943. Веома водне на Морави су 1931, 1937, 1955, на Сави 1937, 1940, 1955, 1970, а на Дринн 1937, 1955. Дакле, само су у коннцинденцијн 1937. и 1955, као две карактеристичне године, које се као веома водне појавлују на већнни река црноморског слива.

Честниа јавлапа годиињих и дневних протпцаја. Поделом годишњих протицаја на класе од по $25 \mathrm{~m}^{3} / \mathrm{s}$, најчешћи протнцаји су од $150-200 \mathrm{~m}^{3} / \mathrm{s}$ и $200-250 \mathrm{~m}^{3} / \mathrm{s}$. У оба ова случаја, укупно је 30 година (50%), а за њима следи класа од $250-300 \mathrm{~m}^{3} / \mathrm{s}$ (13). Испод $250 \mathrm{~m}^{3} / \mathrm{s}$, у 60 -годишњем периоду је 47 година, а само 13 изнад $250 \mathrm{~m}^{3} / \mathrm{s}$. И ова анализа показује да су сушни перноди дужег трајања, али су насупрот томе, поплавни таласи чешћи и краћег трајања.

Учесталост и трајане средње дневних протицаја је нешто другчије у односу на средње годишње. Најучесталији дневни протнцаји су у класи до $100 \mathrm{~m}^{3} / \mathrm{s}$, 128 , а затим та заступљеност опада, па од $100-200 \mathrm{~m}^{3} / \mathrm{s}$ нмамо 94 дана, од $200-300 \mathrm{~m}^{3} / \mathrm{s}, 56$ дана и од $300-400 \mathrm{~m}^{3} / \mathrm{s} 28$ дана. Протицаји од $1300-1400 \mathrm{~m}^{3} / \mathrm{s}$ се појаве просечно једном у години, док се већи протицаји такође појаве једном, али су краћег трајања од 24 часа [Дунайская комисСня, 1965]. Најмањи протицај на Великој Морави од $25,0 \mathrm{~m}^{3} / \mathrm{s}$ траје свих 365 дана, а трајност већих протицаја се смањује, нпр. дневни протицаји изнад 100 $\mathrm{m}^{3} / \mathrm{s}$ трају 237 дана, преко $200 \mathrm{~m}^{3} / \mathrm{s} 56$ дана, $300 \mathrm{~m}^{3} / \mathrm{s} 28$ дана, итд.

За режим велике Мораве веома је битно да се проуче водостаји. Због великих промена корита, нивои воде се могу спустати или издизати, без обзира на промену количине воде у реци. Осцилације речног дна у односу на једну сталну тачку могу да износе и преко $1,5 \mathrm{~m}$. Може се рећи да су промене водостаја више везане за промену речног корита, него за промену влажности године. Крива трајања водостаја показује да водостаји изнад 100 cm трају практично током целе године, изнад 200 cm 230 дана, 300 cm 100 дана.

Вероватноћа великих вода. - Велика Морава је река са највећом честином поплава у нашој земљи. У периоцу до 1967, изливања вода из речног корита су се догађала у просеку

сваке друге године. Највећа вода у периоду 1931-1990. године од $2355 \mathrm{~m}^{3} / \mathrm{s}$ осмотрена је 1963. године. Издвојене су још три годнне са Qmax већим од $2000 \mathrm{~m}^{3} / \mathrm{s}$. То су 1955 , 1958. и 1965. годнна. Укупно је 13 година са великом водом веном од $1.500 \mathrm{~m}^{3} / \mathrm{s}$. Најучесталије велике воде су биле у периоду 1954-1965. У свакој од тих година бнло је више поплавннх таласа са разорним дејством, када су привреди у Поморављу нанете највеће штете у послератном периоду. Beлике воде и поплаве у долини Велике Мораве се јављају најчешће у пролеће и крајем зиме, укупно је забепежено 30 таквих година, док су у јулу, августу и септембру оне веома ретке.

Историске максималне воде на Великој Морави се нису појавиле у осмотреном периоду. До сада највећа вода од 2355 $\mathrm{m}^{3} / \mathrm{s}$ је вероватноће 2% (50 године). И друге вероватне велике воде имају велике вредности; 100 -годишња велика вода је $2520 \mathrm{~m}^{3} / \mathrm{s}$, 500 -годишна $2800 \mathrm{~m}^{3} / \mathrm{s}$, а 1000 -годишња око $3200 \mathrm{~m}^{3} / \mathrm{s}$ [Институт за водопривреду "Ј. Чернн", 1978]. Појава ових вода могла бн да се очекује у наредним годинама, негде у првој деценији 21 века. Осим протицаја, на Морави је значајно проучити вероватноћу водостаја, јер се прогноза и упозорења везују за податке о водостајима. У време редовне одбране од поплава, организује се служба која на неним главним пунктовима осматра и контролише кретане водостаја, који се исказује у cm, али и у апсолутним котама. Тако је у периоду без појаве леда, максимални 100 -годишњи водостај на коти $81,35 \mathrm{~m}$, 50 -годишни на $81,10 \mathrm{~m}$, 20 -годишни на $80,80 \mathrm{~m}$. За време загушена од леда, ови нивои могу бити и виши, па се код давања упозорења о томе мора водити рачуна. Такође, Велика Морава у Љубичеву је под успором Дунава, што се нарочито одражава на максималне водостаје и то после изградње акумулације XE "Ђердап".

Мале воде. - Најмањи осмотрени протицај на Морави је $25,0 \mathrm{~m}^{3} / \mathrm{s}$. Те количине ннсу ни приближно довољне да задовоље све потребе за водом у време када се јављају и када их човек највише користи. Средња годишња мала вода је $52 \mathrm{~m}^{3} / \mathrm{s}$. Минимални протицаји на Морави се јављају у лето или јесен, а маловодни перноди у максимуму могу да трају и до три месеца. Таквих случајева је највише било у послератном периоду, нпр. од 1949. до 1960. године. Историске мале воде на Морави се нису појавиле у обрађиваном периоду. Педесетогодишњи ниски водостај је на коти $74,35 \mathrm{~m}$, а 100 -годишњи на $74,25 \mathrm{~m}$, што је далеко ниже од просечног

малог водостаја, коии је на коти $75,40 \mathrm{~m}$. Ниски водостај који се појави просечно јецном у 20 гоцина је $74,80 \mathrm{~m}$ апсопутие виснне, а 10 -годиинии $75,00 \mathrm{~m}$ (101 cm).

Мнниматни годишни иротицајн на Морави јако варирају, ито је јецнім делом поспедица утицаја човекове делатности. Коефицијенат варијације малих вода је 0,40 , а у месечним вредностима они су већн од 0,70 . Мала вода трајања 30 дана је $63,0 \mathrm{~m}^{3} / \mathrm{s}$.

Вероватие мале годииње воде имају такође јако ниске вредности; 100-годишьи минимални протицај нижи је од апсолутно осмотреног ($25,0 \mathrm{~m}^{3} / \mathrm{s}$) . Минимални протицај који се појавн једном у 10 година је $40,0 \mathrm{~m}^{3} / \mathrm{s}, 20$ годнна $35,0 \mathrm{~m}^{3} / \mathrm{s}$ и 50 година $30,0 \mathrm{~m}^{3} / \mathrm{s}$.

Када се говори о режиму малих вопа, мора се увек имати у виду вихова висинска осцилација у речном кориту под утицајем засипана и продубльивања ерозивним материјалом, што је важно са аспекта ако се воде користе за наводњавање, или утнчу на промену нивоа подземних вода с којима су оне најчешће и хидрауличној вези. Према истраж иванима у периоду 1954-1982. [Оцокольћ М. 1987], површнна протицајног профила за водостај од 100 cm је $70 \mathrm{~m}^{2}$ у 1954. години $128 \mathrm{~m}^{2}$ у 1972. а $180 \mathrm{~m}^{2}$ у 1982. години. Дакле, за нсти водфостај, површина прохицајног профила малих вода у Љубичевском Мосту повећана је за непуннх 20 година за скоро три пута, из чега произилази да се корито Мораве чисти оп сувишних наноса. На ово утиче и човек коришћењем песка и шљунка у грађевинске сврхе.

Западна Морава је већи водоток Србије који дотиче из неног западног и југозападног дела. Уноси у Велику Мораву $124 \mathrm{~m}^{3} / \mathrm{s}$ вода, па је она по томе трећа по величини река централне Србије (после Дрине и Велике Мораве). Хидролошки подаци на реци се осматрају и мере на неколико профила правилно распоређених од неног почетка у Пожешкој котлини до састава са Јужном Моравом код Сталаћа, где је површина њеног слива $15850 \mathrm{~km}^{2}$. Најдужа осматрања су у Гугаљском Мосту, који се налази на источном ободу поменуте котлине, односно приближно на месту где река улази у Овчарско-кабларско сужење. Ту се осматрања обавлају непрекидно од 1927. годнне, тако да је и на овој станици образован 60 -годишњи низ, закључно са 1986. годином. Просечан протицај реке у наведеном периоду је $31,1 \mathrm{~m}^{3} / \mathrm{s}$, са специфичном издашношћу слива од $11,6 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$.

Средне месечни протицаји су у функцији многих фи-зичко-географских параметара слива, највиие краса, који је до поменутог профила заступлен са 26%, али и нешто повећаних падавнна у западној зони млађнх веначних планина, где је нен слив развијен (таб. 34). Средне падавине у сливу су 874 mm , испараване око 500 mm , а внснна отицаја 374 mm .

Таб. 34. - Средне месечни и годишњи протичаји Западне Мораве у Гугаюком Мосту у периоду 1927-1986.

Tab. 34. - Mean monthly and annual discharge of the Zapadna Morava river (Gugaljski most) in the period 1927-1986.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год.
Qs	27.5	43.4	56.0	51.4	46.9	31.6	20.9	13.0	13.2	17.1	23.1	29.4	31.1
Cv	0.48	0.61	0.46	0.54	0.66	0.65	0.71	0.88	0.72	0.93	0.76	0.57	0.28
σ	13.2	26.5	25.8	27.8	31.0	20.5	14.8	11.4	9.5	15.9	17.6	16.7	8.7

Највећи средње месечни протицаји су у пролеће п крајем зиме, када су већи од $40,0 \mathrm{~m}^{3} / \mathrm{s}$, а у летњо-јесењим месецима мани су од $20,0 \mathrm{~m}^{3} / \mathrm{s}$. Као н на другим околним рекама, протицаји Западне Мораве су јако променыиви. Послецица су положаја слива, његовог облика и развијене речне мреже. Највећа колебања су у октобру, августу и новембру, а најмања у пролеће н знму. Коефицијенат варијације годиињих протицаја је 0,28 , мањи је него на Ибру, а већи него на Лиму и Дринн. Променљивост протицаја у односу на просечну вредност се нешто разликује, бројне вредности стандардне девијације су највеће у месецима када су и протицаји највећи, мећутим, процентуална одступања су највећа у време најмањих вода, нпр. у августу и октобру, средње месечни протицаји су приближни стандардној девијацији, док у марту чине 50% средње месечног протицаја.

Цикличност отнцана у перноду 1927-1986. годнна. -

 Десетогодншњи просеци на Западној Морави внше варирају, него на Ибру, нли Дрнни. Прва деценнја 1927-1936. има мањак отицања од 9%, друга (1937-1946) вншак за 15\%, трећа (1947-1956) је сушнија за $5,7 \%$, а четврта (1957-1966) за $7,7 \%$, док су пета (1967-1976) и шеста (1977-1986) водније за 6,1\% и 10,9\%. Скоро све деценије имају већа или мања одступања оп просека и прелазе дозвољену границу, што је ређи случај међу другим рекама у Србпји. Зато се десетогодиини просеци на ЗападнојМорави не могу увек узетн као меродавни за изучаване реж има реке. Међутим, 20-годишњи просеци у истом оцносу се знатно мане разпнкују, па се изабрана три таква пернода сматрају репрезентативннм.

Pamпиранье подниа по водности. - Ако се сви годиицњи протіцаји изразе Pearson III raspodelom, а године 60-rодиинег периода киаснфикују по карактеру њнхове водности, онда је укупан број средње водннх (25,1-35,0 $\left.\mathrm{m}^{3} / \mathrm{s}\right) 32$, сушних ($20,1-25,0 \mathrm{~m}^{3} / \mathrm{s}$) 11 , веома суиних је 3. Водних година је 11, веома водних 3. Катастрофално сушна са $Q<15,0 \mathrm{~m}^{3} / \mathrm{s}$ и катастрофално водна са $Q>60,0 \mathrm{~m}^{3} / \mathrm{s}$ се нису појавиле за последњих 60 година, па се њихова појава може очекивати у годинама наредног периода. Као што се види (таб. 35), постоји правилна заступьеност годнна по особинама њихове водностн, највише је средне водних, затим сушних и водних година.

Таб. 35. - Рангиране ıодина по водности Западне Mораве у Гугавском Мосту у периоду 1927-1986.

Tab. 35. - A ranking of the years in theirs watery of the Zapadna Morava river (Gugaljski Most) in the period 1927-1986.

Водност године	Протицај	Γ о д и н е	Epoj година
Катастрофално сушне	<15.0		0
Веома сушне	15.0-20.0	1951, 1950, 1953.	3
Сушне године	20.1-25.0	$\begin{aligned} & 1928,1931,1934,1945,1946,1947, \\ & 1961,1966,1972,1982,1983 . \end{aligned}$	11
Средње водне године	25.1-35.0	$\begin{aligned} & 1927,1929,1930,1932,1933,1935,1936, \\ & 1938,1939,1943,1944,1948,1949,1952, \\ & 1954,1957,1958,1959,1960,1961,1962, \\ & 1963,1964,1965,1968,1969,1971,1973, \\ & 1974,1976,1977,1985 . \end{aligned}$	32
Водне године	35.0-45.0	$\begin{aligned} & 1940,1941,1942,1956,1967,1975,1978 \text {, } \\ & \text { 1979, 1981, } 1984 \end{aligned}$	11
Катастрофално водне	>60.0		0

Године средие водности се јавлају сваке друге, водне п сушне сваке иесте, а веома сушне и веома водне сваке 20-те године. Најводнија година по средне гопнињем протнцају је 1955 . која је са $\mathrm{Qs}=57,8 \mathrm{~m}^{3} / \mathrm{s}, 1,86$ пута је воднија од просеине године, а потом следе: 1937. ($57,3 \mathrm{~m}^{3} / \mathrm{s}$), па тек онца 1970. са $46,0 \mathrm{~m}^{3} / \mathrm{s}$. Најсушнија је 1951. са $\mathrm{Qs}=18,2 \mathrm{~m}^{3} / \mathrm{s}$, затим 1950. са $Q s=19,2 \mathrm{~m}^{3} / \mathrm{s}$ и 1953. ($20,1 \mathrm{~m}^{3} / \mathrm{s}$). У сливу Западне Мораве изузетно сушни пернод је трајао од 1945-1953. године, пуних 9 година у којма средње годишњи протицај није прелазио $29,0 \mathrm{~m}^{3} / \mathrm{s}$. У оцносу на Ибар, распоред сушних и влажних година није исти, јер су на Ибру најсушније 1972, 1943, 1985. Такође, постоји извесна разлика у појавливању влажних година. После периода 1927-1986., појављују се наизменнчно годнне средње водности али и суине године. Нпр. 1987. је са протнцајем $34,6 \mathrm{~m}^{3} / \mathrm{s}$, а 1988 . са $30,7 \mathrm{~m}^{3} / \mathrm{s}$. Обе су сврстане у средне водне године, јер им је протицај већи од $25,0 \mathrm{~m}^{3} / \mathrm{s}$.

Честниа појављивана карактернстичних годишиих протнцаја. - Укупно обрађених 60 година статистички је поделено у класе од по $5,0 \mathrm{~m}^{3} / \mathrm{s}$, па су протицаји на Западној Морави и на овај начин рангирани. Најзаступленнјн су у класн од $25-30 \mathrm{~m}^{3} / \mathrm{s}, 18$ појава пли 30%, а затим од $30-35$ $\mathrm{m}^{3} / \mathrm{s}$ (13). И на Западној Морави протицаји најчешће варирају око просечне вредности ($31,1 \mathrm{~m}^{3} / \mathrm{s}$), а у вииим и нижим класама њихов број опаца, нпр. од $15-20 \mathrm{~m}^{3} / \mathrm{s}$ ммамо заступњене само две године, што исто важи за највииу класу од $55-60 \mathrm{~m}^{3} / \mathrm{s}$.

За режим Западне Мораве карактеристична су и временска трајаюа одређеннх протицаја, нпр. дневни протицаjн изнад виинегодишњег $\left(31,1 \mathrm{~m}^{3} / \mathrm{s}\right)$ трају годишње просечно око 120 дана, док протицаји изнад $50 \mathrm{~m}^{3} / \mathrm{s}$ трају 60 дана. Мале воде су нормално дужег трајања, протицаји испод 10,0 $\mathrm{m}^{3} / \mathrm{s}$ трају 284 дана, а нспод $5,0 \mathrm{~m}^{3} / \mathrm{s} 360$ дана. Занимљнва су и друга трајања карактеристичних протицаја приказаних у таб. 36 .

Таб. 36. - Мреплед трајана дневних протичаја Западне Мораве у Гугањском Мосту у периоду 1927-1986.
Tab. 36. - A review duration of the daily discharge of the Zapadna Morava river (Gugaljski Most) in the period 1927-1986.

[^0]Осим гопииние криве трајања протнцаја, у пракси се често користе и месечне криве трајана. На скици 11 су просечне месечне криве трајана цневних протицаја за најхпадннји јануар и најтоплнјн јулн. У јануару, протнцај оц $30 \mathrm{~m}^{3} / \mathrm{s}$ траје просечно 10 дана, а у јупу само 6 дана [Оцокоин万 М. 1983].

Cк. 11. - Mросеине жриве трајања протииаја реке Западне Mopase (Гугакски Мост) за период 1927-1977

Sk. 11. - Average mounthy curve duratior discharge of the Zapadna Morava river (Gugaljski Most) for the $1927-1977$ period

Велике воде на Западној Морави се најчешће јавлају крајем пролећа (мај), када су и поплаве честе, мада је и фебруар са великом честином појава великих вода.

Апсолутно највећа вода у обрађнваном периоду је 1250 $\mathrm{m}^{3} / \mathrm{s}$, осмотрена је 13. 05. 1965. Ова вода се убраја у 100-годииње велике воде, и собзиром на њену вредност убраја се у историске велике воде. По величини појавливања велике воде су осмотрене и у другим годинама, 1932. (800 $\mathrm{m}^{3} / \mathrm{s}$), 1934. ($419 \mathrm{~m}^{3} / \mathrm{s}$), 1959. ($405 \mathrm{~m}^{3} / \mathrm{s}$), 1967. ($491 \mathrm{~m}^{3} / \mathrm{s}$).

Мале воде на Западној Морави не падају испод 2,0 $\mathrm{m}^{3} / \mathrm{s}$, колики је апсолутни минимум измерен средином овог века. Најсушније године су у периоду 1943-1953, када су забележене нзузетно мале воде. Најчешће су у септембру, у којем је 14 појава, и октобру са 12 појава малих вода. Оба ова месеца учествују са 50%, односно приближно половина свих појава у 60-годишњем периоду. Мале воде се ретко јавльау у пролеће, нису забележене нпр. у марту и априлу, а осим летьих и јесењих месеци, веома су ретке и у другим месецима године.

У погледу прогнозе даъих кретана сушних и водних пернода на Западној Морави и неним притокама важи правило које је речено за друге реке у Србији. Сушнији период који већ сада траје наставиће се и у наредним годинама са внше појава средње водних и сушних годнна него влажннх, што је уосталом карактеристика и плувнометриског режима, јер су падавине повећане у летњој половини године, када је испаравање велнко, а умашене у хладнијој половині, када су отицана највећа. У последних 10 година (1977-1986), бнло је шест годнна, чија су отицања била нзнад просечне, а само четири са отнцањем мањнм од отицања у просечној години.

4 6 a

Ибар је река са релативно дугнм осматрањима водостаја и протицаја. Најдужа су у Рашкој, где се обављају дуже од 60 година. Хндролошка станица је на стубовима каменог моста, где је корито стабилно, изграђено је од стена са већим падом, тако да је скоро у непрекидном периоду важила једнозначна крива протицаја, дефинисана са већим бројем мерења и у прератном и послератном периоду.

Основни хидрографски подаци Ибра у профнлу Рашка су: $\mathrm{F}=6268 \mathrm{~km}^{2}$, удаљеност од ушћа $94,3 \mathrm{~km}$, кота "0" осматрања $394,10 \mathrm{~m}$. Средња нацморска виснна слива је 830 m са средним падавинама у сливу од 740 mm н годншним протицајем од $44,6 \mathrm{~m}^{3} / \mathrm{s}$ (таб. 37). Специфична издашност слива је $q=7,12 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$, виснна отицаја је 230 mm , испаравање 511 mm са коефицијентом отицања од 0,31 .

Средње месечни протнцаји су највећи у пропеће (март, април, фебруар, мај), а најмањі у лето и почетком јесени. Март је са највећим протицајем ($83,7 \mathrm{~m}^{3} / \mathrm{s}$), а август са најмањим ($14,9 \mathrm{~m}^{3} / \mathrm{s}$). Или, они се односе као $1: 5,62$. Променљнвост протицаја на Кбру је велика.

Tab.37. - Средне месеъни и годишни протицаји Мбра (Рашка) у nepuody 1926-1985.
Tab.37. - Mean monthly and annual discharge of the Ibar river (Raska) in the period 1926-1985.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год.
Qs	45.1	70.1	83.7	76.0	63.4	36.2	23.8	14.9	15.2	23.9	35.5	47.8	44.3
CV	0.68	0.76	0.72	0.55	0.58	0.51	0.73	0.71	0.67	1.06	0.90	0.86	0.37
σ	30.6	53.3	60.2	41.8	36.8	18.5	17.4	10.6	10.2	25.3	32.0	41.1	16.4

Годишни коефицијент варијације је 0,37 , по чему се Ибар убраја у реке са већим колебањима протицаја [Оцокољлћ M. 19917. У месечним вредностима, Cv је значајно веће од годишње вредности. Месечни протицаји су највише променљиви у октобру ($\mathrm{C} v=1,06$), а најмање у јуну ($\mathrm{Cv}=0,51$). Као и код других река, коефицијенти варијације стоје у обрнутом односу према највећој и најмањој количини воде у реци, највећи су у лето, јесен, а делимично и зими, дакле у време најмањих вода. Најнижи су крајем пролећа и почетком лета, у време највећих вода. Међутим, колебања месечних и годишњих протицаја у односу на вишегодишњу вредност су нешто другчија. Стандардна девијација је по бројним вредностима највећа за време највећих протицаја, нпр. у марту $\sigma=60,2 \mathrm{~m}^{3}$ / s , фебруару $53,3 \mathrm{~m}^{3} / \mathrm{s}$, априлу $41,8 \mathrm{~m}^{3} / \mathrm{s}$, а најмања у септембру ($10,2 \mathrm{~m}^{3} / \mathrm{s}$), августу $10,3 \mathrm{~m}^{3} / \mathrm{s}$. Међутим, ако стандардну девијацију изразнмо у процентима од годишње вредности, онда се она поклапа са вредностима коефицијента варијације. Нпр. у октобру је $\sigma=25,3 \mathrm{~m}^{3} / \mathrm{s}$ и већа је од средње месечног протицаја ($\mathrm{Qs}=23,9 \mathrm{~m}^{3} / \mathrm{s}$). У новембру и децембру се приближава месечним вредностима. У јуну, када је Cv најмање, чини само 50% просечне јунске вредности отнцања. На оваква колебања протицаја утичу и карактеристике рельефа и положај слива Ибра. И ако је слив Ибра један од најпространијих и највиши међу другим слнвовима у Србији, ипак је он сиромашан у води. Постоји неравномерност у просторном и висинском распореду вода. Најмању издашност има његова највећа притока Ситница ($\mathrm{F}=2861 \mathrm{~km}^{2}, \mathrm{q}=5,60 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$), а највише протицаја се образује на надморским висинама од $1000-1200 \mathrm{~m}$ $(22,7 \%)$, мада у овоме предначе и површине на виспнама од $600-1200 \mathrm{~m}$, које дају $\mathrm{Qs}=44,7 \mathrm{~m}^{3} / \mathrm{s}$, или 70% укупних вода Ибра које он уноси у Западну Mораву код Краљева ($\mathrm{F}=8059$ km^{2}, $\mathrm{Qs}=64,0 \mathrm{~m}^{3} / \mathrm{s}$).

Цикличност хидролошких низова. - Када се годишюьи $^{\text {ния }}$ протицаји Ибра у периоду 1926-1985. године изразе у виду 10-годиињих просека и упореде са впиегодишњим, уочене су знатне разтике код појединих деценија. Tрећа (1946-1955), четврта (1956-1965) и шеста (1976-1985) деценија имају приближно исте протицаје, којн су веома блиски 60-годинњем; Qs треће деценије је $44,6 \mathrm{~m}^{3} / \mathrm{s}$, четврте $46,3 \mathrm{~m}^{3} / \mathrm{s}$, п шесте $44,7 \mathrm{~m}^{3} / \mathrm{s}$. Међутим, остале три деценије значајно одступају, па су оне изузетак у односу на друге реке Србије. Прва деценија (1926-1935) са $Q s=35,4 \mathrm{~m}^{3} / \mathrm{s}$, сушнија је за $9,2 \mathrm{~m}^{3} / \mathrm{s}$, нли за око 20%, друга (1936-1945) са $Q s=58,6 \mathrm{~m}^{3} / \mathrm{s}$, разлнкује се од прве $23,2 \mathrm{~m}^{3} / \mathrm{s}$, или воднија је од просека за $31,4 \%$. Значајно суиннји период је од 1966-1975. године ($\mathrm{Qs}=37,3 \mathrm{~m}^{3} / \mathrm{s}$) који има мањак отицања од 16%. У нстом односу, упоређени 20-годиишьи просеци показују мале разлике, први период $(1926-1945)$ је са $\mathrm{Qs}=47,0 \mathrm{~m}^{3} / \mathrm{s}$ и други $(1946-1965)$ са $\mathrm{Qs}=45,4$ $\mathrm{m}^{3} / \mathrm{s}$. Међутим, трећи период (1966-1985) одступа за -8%. Када би се он користио за оцену карактеристика режима Ибра, њега би требало нешто кориговати и свести у границе толерантних одступања, избором година у којима ће Qs бити задоволавајуће. Према томе, када се ради о Ибру и његовим притокама, код пзбора низова треба бити обазрив, нарочито 10-годишњих, који, као ито смо видели, могу битно да се разлнкују од нормалне вредности отицања.

Ако 60-годишњи низ тестирамо статнстичким методама, по раније датим обрасцима (средьа квадратна грещка и грешка коефицијента варијације) са истим подацима потврђена је цикличност низа 1926-1985.

Класнфнкација година по водности. - Ако 60-годишюи низ на Ибру у Рашкој подвргнемо статистичкој анализи обрадом вероватноће и рангирамо године по водности, узимајући при томе проценте појављивања одговарајућих протицаја, односно да су све године од 99-99,9\% катастрофално сушне, од $95-99 \%$ веома сушне, од $25-75 \%$ средње водне, $25-5 \%$ водне, од $5-1 \%$ веома водне, и од $1-0,1 \%$ катастрофално водне, онда и ту постоји одређена законитост њихове честине. Највећи број је година срепње водности са протицајем од $32,5-52,5 \mathrm{~m}^{3} / \mathrm{s}$, укупно 33, таб. 38. У приближно истом односу стоје сушне и водне године (9:11), а такође, веома сушне и веома водне (4:3). Катастрофално сушна са протицајем мањим од 20,0 $\mathrm{m}^{3} / \mathrm{s}$, и катастрофално водна са протицајем већим од 105 $\mathrm{m}^{3} / \mathrm{s}$ се још нису појавиле на Ибру у осматраном периоду.

Средње водне године се јављају просечно сваке друге, сушне сваке 6-те, веома сушне сваке 15-те године. Честина појављивања водних година је сваке 6-те, веома

водних сваке 20-те године. Правилан распоред гоцина по карактеристикама њихове водности у периоду 1926-1985. потврђује још једном констатацију ца је овај низ цикличаи, и да може битн репрезентатнван за изучаваюе режима Ибра н негових притока, а самим тим, н за доб́нање поузданнх хидропоинких подлога неопходних за водопривредна искорнићавања воца.

Таб. 38. - Paнгране година по водности на Мбру (Раика) у nepuody 1926-1985.

Tab. 38. - A ranking years in theirs watery of the Ibar river (Raška) in the period 1926-1985.

Водност године	Протицај	Γ о д и н e	Број година
Катастрофално сушне	<20.0		0
Веома сушне	20.0-25.0	1943, 1968, 1972, 1985.	4
Сушне године	26.0-32.5	$\begin{aligned} & \text { 1926, 1932, 1933, 1934, 1946, 1949, } \\ & \text { 1950, 1971, } 1983 . \end{aligned}$	9
Средње Водне године	32.6-52.5	$\begin{aligned} & 1927,1928,1929,1930,1931,1935,1936 \text {, } \\ & \text { 1939, 1945, 1947, 1948, 1951, 1952, 1953, } \\ & \text { 1954, 1957, 1959, 1960, 1961, 1962, 1964, } \\ & 1965,1966,1967,1969,1973,1974,1975 \text {, } \\ & 1977,1978,1979,1982,1984 . \end{aligned}$	33
Водне године	52.6-70.0	$\begin{aligned} & 1938,1940,1941,1944,1956,1958,1963, \\ & 1970,1976,1980,1981 . \end{aligned}$	11
Веома водне	71.0-105	1937, 1942, 1955.	3
Катастрофално водне	>105		0

Најводније године по средње годишњем протицају су: 1955. ($102 \mathrm{~m}^{3} / \mathrm{s}$), koja је од просека већа за 2,3 пута, а за њом следе: $1942 .\left(98,7 \mathrm{~m}^{3} / \mathrm{s}\right)$, 1937 . $\left(96,6 \mathrm{~m}^{3} / \mathrm{s}\right)$. Ове године знатно предњаче по величини протнцаја, јер је следећа година са протицајем од $64,5 \mathrm{~m}^{3} / \mathrm{s}$ (1940). Најсушнија година на Ибру је 1972. $\left(21,4 \mathrm{~m}^{3} / \mathrm{s}\right)$, затим 1943. $\left(24,7 \mathrm{~m}^{3} / \mathrm{s}\right)$, 1985 . $\left(24,8 \mathrm{~m}^{3} / \mathrm{s}\right), 1968$. $\left(25,0 \mathrm{~m}^{3} / \mathrm{s}\right)$, 1950. $\left(25,9 \mathrm{~m}^{3} / \mathrm{s}\right)$. Види се, да су веома водне

године биле у првој половини 20 века (пре 1950. године), док је знатно већи број сушних година после 1950. године. Наредне три године (1986, 1987, 1988), које нису ушле у обраду проучаваног низа су следеће водности: $1986 .\left(62,6 \mathrm{~m}^{3} / \mathrm{s}\right)$ је водна ($9,5 \%$), 1987. ($42,2 \mathrm{~m}^{3} / \mathrm{s}$) је средње водна (50%), 1988. (45,6 $\mathrm{m}^{3} / \mathrm{s}$) је такође средње водна (40%).

Честина појављиваьа карактеристнчних протнцаја.

 Годишњи протицаји 60 -годишњег низа пзражени су по класама од најмање до највеће вредности са разликом од по 10 $\mathrm{m}^{3} / \mathrm{s}$. Цобијене су карактеристике честине појавливања одређених протицаја, што је значајно са аспекта коришћења вода. И на Ибру су најчешћи средње годишни протицаји чије су вредности блиске вишегодишњем просеку. Према подацима у таб. , највећи број протицаја је у класи од $30-40 \mathrm{~m}^{3} / \mathrm{s}$ (19), затим од $40-50 \mathrm{~m}^{3} / \mathrm{s}$ (15) и од 20-30 (9). Види се, да је значајно већа заступљеност протицаја у нижим класама него у вишим; изнад $60 \mathrm{~m}^{3} / \mathrm{s}$ је само 5 таквих случајева, нз чега произилази да су трајнији мањи него већи протицаји.Таб. 39. - Честина појавъивана средње годишњих протицаја на Ибру у Рашкој (1926-1985).
Tab. 39. - Frequency of appearing mean annual discharge of the Ibar river (Raška) in the period 1926-1985.

| Kuaca | $100-110$ | $90-100$ | $80-90$ | $70-80$ | $60-70$ | $50-60$ | $40-50$ | $30-40$ | $20-30$ | Cвега |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Epoj | 1 | 2 | 0 | 0 | 4 | 10 | 15 | 19 | 9 | 60 |
| $\%$ | 1.7 | 3.3 | 0.0 | 0.0 | 6.7 | 16.7 | 25.0 | 31.7 | 15.0 | 100.0 |

Апсолутно највећа вода на Ибру је била 19. 11. 1979. године. Тада је коритом реке текло $1230 \mathrm{~m}^{3} / \mathrm{s}$, што је за 1,35 пута више од предходно појављене максималне воде из 1937. ($910 \mathrm{~m}^{3} / \mathrm{s}$). Ова вода сматра се историском, предпоставльа се да је то горња могућа граница велике воде на Ибру, која може бити потврђена и у годинама наредних периода. Осим ових година, изузетно максималне воде су забележене 1965 $\left(834 \mathrm{~m}^{3} / \mathrm{s}\right)$, 1942. ($826 \mathrm{~m}^{3} / \mathrm{s}$), 1955. ($796 \mathrm{~m}^{3} / \mathrm{s}$), 1927. ($758 \mathrm{~m}^{3} / \mathrm{s}$).

Поводњи на Ибру се најчешће јављају у фебруару у којем су највеће честине великих вода (14), а онда у марту (12) и априлу (11). Око 62% случајева појава великих вода је у ова три месеца и условљена је топљењем снега и кишама под утицајем медитеранских ваздушних депресија. Такозваних

зелених поплава у сливу Ибра немамо, јер се максимални протицаји нису појавнли у јулу и августу, а ретки су случајеви њихове појаве у јуну, септембру, октобру и јануару.

Мале воде на Ибру се најчешће јављају у августу са 24 појаве оц могућнх 60, а онда у септембру (14) и јулу (6). У пролећним месецима на Ибру немамо појава изузетно малих вода, док се насупрот томе, оне могу појавити у зиму (јануар), каца су падавине снежне у којем се ретензују веће резерве воде, које се појаве у реци након топљења снега у пролеће.

Најмана вода на Ибру у Рашкој је $3,5 \mathrm{~m}^{3} / \mathrm{s}$ (1950). По честини јавлана, најчешће мале воде су у класи од 5-7 $\mathrm{m}^{3} / \mathrm{s}$ и $7-9 \mathrm{~m}^{3} / \mathrm{s}$, укупно у обе класе 42 појаве или 70%.

Прогноза даљих кретања режимских карактеристнка Ибра могла би се свести на то, да ће се тренд чешћих сушних и средње водних година наставити и у наредном периоду, до краја овог века, да ће се максималне воде и даље јавлати у пролеће или крајем зиме, могу се очекивати и појаве катастрофално сушне и катастрофално водне године.

H K mana

Нишава је река источне и југоисточне Србије. Највећи део њеног слива је под красом (35\%). Уз то, слив Нишаве је претежно у планинама, уским долинама и котлинама. Зато је просторни, висински и временски распоред вода неповољан. У северним деловима, који су на Старој планини, специфичнн отицаји су већи од $20,0 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$ (Топлодолска р.), а крајни источни делови који су у Бугарској су са отицањем мањим од $6,0 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$. Висински распоред вода је такође неповољан, али велики падови у сливу омогућавају хидроенергетско коришћење њених вода. Највише протицаја дају површине на висинама $600-1000 \mathrm{~m}(38,6 \%)$, затим од $1000-1200 \mathrm{~m}$ и 400-600 (30\%). Изнад изохипсе 1000 m , у сливу се образује $15 \mathrm{~m}^{3} / \mathrm{s}$ вода, а изнад средње надморске висине слива (808 m) $21,2 \mathrm{~m}^{3} / \mathrm{s}$ или 62% укупних вода Нишаве [Оцокольн M. 1987].

Најдужа осматрања на Нишави су у Белој Паланци, где су протицаји обрађени од 1926-1985. Просечна годишња вредност за тај период је $25,1 \mathrm{~m}^{3} / \mathrm{s}$, који се од просека 1951-1985. разликује за $0,8 \mathrm{~m}^{3} / \mathrm{s}$. Средња издашност слива је $8,13 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$ (таб. 40).

Таб. 40. - Средње месечни и годишни протицаји Нишаве у Белој Палаичи (1926-1985)
Tab. 40. - Mean monthly and annual discharge of the Nis̃ava river (Bela Palanka) in the period 1926-1985.

| | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | Год. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Qs | 22.2 | 32.0 | 46.6 | 50.2 | 42.3 | 28.9 | 16.5 | 10.0 | 8.3 | 10.3 | 14.4 | 20.0 | 25.1 |
| Cv | 0.75 | 0.67 | 0.48 | 0.48 | 0.52 | 0.70 | 0.75 | 1.10 | 0.66 | 1.07 | 0.75 | 0.81 | 0.30 |
| σ | 16.6 | 21.4 | 22.4 | 24.1 | 22.0 | 20.2 | 12.4 | 10.9 | 5.5 | 11.0 | 10.8 | 16.2 | 7.5 |

Највеһч протицаји на Нишави су у априлу, марту и мају, тј. у пролеће, што је једним депом условъено н топљенем снега, а најмањи у лето и јесен, када је испаравање највеће. Променљивост протицаја је велика. Највећи и најмањи средње месечни протицај односе се као $1: 6,02$, а то потврђују и коефицијенти варијације који показују колебана протицаја од месеца до месеца или године до године. Највећи коефицијенти варијације су у лето и јесен са Сv у августу $(1,10)$ и октобру (1,07), дакле у време када су протицаји најмањи. Најмана колебана протицаја су у време највећих вода у пролеће и зиму, у марту и априлу Cv је испод 0,50 . Међутим, у односу на стандардну девијацију, коефицијенти варијације су у обрнутом односу. Вредности стандардне девијације, која показује одступане годишњих протицаја од просечне вредности су највеће за време највећих вода, а најмање за време малих вода. Годишње вредности протицаја могу да варирају у негативном и позитивном смислу од просека за $7,53 \mathrm{~m}^{3} / \mathrm{s}$. Гледано по месецима, та вредност је највећа у априлу, када је $\sigma=24,1 \mathrm{~m}^{3} / \mathrm{s}$, скоро 50% од просечне вредности за април $\left(50,2 \mathrm{~m}^{3} / \mathrm{s}\right)$. Међутим, када стандардну девијацију изразимо у процентима од просечне месечне вредности, онда и она стоји у обрнутом односу према распореду отицања унутар године.

Честина појављивања средње годишњих протицаја је највећа у класи од $20-25 \mathrm{~m}^{3} / \mathrm{s}$ са укупно 21 појавом од могућих $60(35 \%)$, а затим следе протицаји од $30-35 \mathrm{~m}^{3} / \mathrm{s}$ (11), $25-30 \mathrm{~m}^{3} / \mathrm{s}$ (9), и од $15-20 \mathrm{~m}^{3} / \mathrm{s}$ (7). Најмању честину имају годишњи протицаји у класи од $9-10 \mathrm{~m}^{3} / \mathrm{s}$ (1) и $40-45 \mathrm{~m}^{3} / \mathrm{s}$ (2). Најводнија година је 1955. са протицајем од $41,1 \mathrm{~m}^{3} / \mathrm{s}$, а онда 1948. са $40,1 \mathrm{~m}^{3} / \mathrm{s}$. За њима следе: 1940. ($39,1 \mathrm{~m}^{3} / \mathrm{s}$), 1937. $\left(39,0 \mathrm{~m}^{3} / \mathrm{s}\right)$ и 1941. ($37,3 \mathrm{~m}^{3} / \mathrm{s}$). Године са карактеристикама њихове водности се углавном поклапају са истим годинама

на другим рекама, са изузетком 1948. када је у јуну била изузетно велика вода са Qmes $=122 \mathrm{~m}^{3} / \mathrm{s}$, које је далеко највеће међу другим месецима 60 -годишњег пернода.

Изузетно мале воде појавиле су се средином овог века, 1949. година је са најмањим протицајем $\left(9,57 \mathrm{~m}^{3} / \mathrm{s}\right)$, затим 1943. ($11,4 \mathrm{~m}^{3} / \mathrm{s}$) и 194.6. ($12,0 \mathrm{~m}^{3} / \mathrm{s}$). Већи број суинних година је забепежен после 1981. године, када су протицаји до закључно са 1988. били мани од $25,0 \mathrm{~m}^{3} / \mathrm{s}$, са најманом вредношћу у 1985. годнни ($15,2 \mathrm{~m}^{3} / \mathrm{s}$).

Ако извршимо класификацију година по водности, на сличан начин како је то учињено са другим рекама у Србији, катастрофално сушна и катастрофално водна на Нишави се још нису појавиле у периоду осматрања, док је највећи број средње водних година (29), односно половина осмотрених узорака, 16 је водних година, веома водних је само 2, док је веома сушннх 3 године. Сушних је 10 година ($12,5-20,0$ $\mathrm{m}^{3} / \mathrm{s}$). При овој класификацији, у средње водне убројене су оне године чији су се годишњи протицаји кретали између $20-30 \mathrm{~m}^{3} / \mathrm{s}$; водне од $30-40 \mathrm{~m}^{3} / \mathrm{s}$, веома водне од $40-45$ и веома сушне од $8-12,5 \mathrm{~m}^{3} / \mathrm{s}$. Као што се види, постоји потпуна сагласност у погледу броја појављених година по карактеристикама њихове водности, па се низ 1926-1985. на Нишави прихвата као цикличан. Катастрофално сушна и катастрофално водна година су са протицајем испод $8,0 \mathrm{~m}^{3} / \mathrm{s}$, односно изнад $45,0 \mathrm{~m}^{3} / \mathrm{s}$. Прогнозира се да би нешто сушнији период који већ сада траје, могао да буде настављен и у наредним годинама, с тнм што би и у том периоду био заступлен већи број гоцина са годишњим протицајем који би се кретали у границама од 20-30 $\mathrm{m}^{3} / \mathrm{s}$ (средње водне године). Међутим, када се говори о отицању Нншаве, мора се имати у виду поремећеност њеног режима антропогеним утицајима. Изграђена је акумулација на Височици (Завој), одакле се вода одводи цевоводима за производњу електричне енергије код Пирота, а већи цео њених вода се користи у Бугарској и одводи у друге сливове, који припадју непосредном сливу Дунава.

Максималне воде на Нишави су честе са изузетно великим вредностима. У последњих 35 година, највећа вода била је 1976. године ($456 \mathrm{~m}^{3} / \mathrm{s}$) и то у јуну, а слична велика вода је осмотрена 1948, такође у јуну. Велике воде се јављају у пролеће и зиму (кише-снег), али пљусковите кише у лето имају већи удео у формирању изузетно великих вода (бујице). Мале воде на Нишави у Белој Паланци знатно дуже трају од великих, појављују се у лето и јесен, крећу се око $3,0 \mathrm{~m}^{3} / \mathrm{s}$. Сушни периоди у максимуму могу да трају и до три месеца.

以 $\mathbf{p} \boldsymbol{H} \boldsymbol{\mu} \mathbf{a}$

Црница је мања притока Велике Мораве ($\mathrm{F}=338 \mathrm{~km}^{2}$), али је по издашности слива ($q=10,8 \quad 1 / \mathrm{s} / \mathrm{km}^{2}$) међу првима у Велико-моравском басену. Осматрана у Параћнну обављају се непрекидно од 1926. године, па је и на овој. реци формнран низ од 6 о година. Просечан протицај Црнице је 3,66 $\mathrm{m}^{3} / \mathrm{s}$. То су мале количине и Црница нема неки већи водопривредни значај, али се ъене воде могу користити за локал не потребе. Међутим, распоред вода унутар године је веома поволан. Срецње месечни протицаји у летиим месецима нису нижи од $1,30 \mathrm{~m}^{3} / \mathrm{s}$, док је апсолутни миннмум $100 \mathrm{l} / \mathrm{s}$

Ако се протицаји Црнице пзразе по деценијама обрађеног 60-годишњек периода и њихове вредности упореде са вишегодииюим, у томе постоје битније разлике. Први пернод (1926-1935) је веома близак просечном, његово Q је 3,57 $\mathrm{m}^{3} / \mathrm{s}$ према $3,66 \mathrm{~m}^{3} / \mathrm{s}$, док међутим, други период (1936-1945) значајно оцступа. Отицања овог пернода ($4,67 \mathrm{~m}^{3} / \mathrm{s}$) већа су од просечног за $27,6 \%$. Трећа деценија (1946-1955) је сушнија за 14%, док су четврта, пета и шеста блиске вишегодишњој вред ностн. Нпр. у перноду 1956-1965. Q је 3,44 $\mathrm{m}^{3} / \mathrm{s}, 1966-1975$. 3,67 и 1976-1985. године $3,40 \mathrm{~m}^{3} / \mathrm{s}$. У истом односу упоређени 20-годишњи просеци, разлике су следеђе: први период (1926-1945) са $Q s=4,02 \mathrm{~m}^{3} / \mathrm{s}$, воднијп је од просека $9,8 \%$, цруги (1946-1965) са $\mathrm{Qs}=3,30 \mathrm{~m}^{3} / \mathrm{s}$ суинијн је за око 10%, цок је тређи (1966-1985) са $Q s=3,42 \mathrm{~m}^{3} / \mathrm{s}$ суинији за 6%. Према томе, када су у питању меродавни хидролошки низови за мале реке, каква је управо Црница, није одлучујуће само то, колика је дужина периопа, већ у томе већи значај имају број и распоред сушних и водних година.

Да би испитали цикличност низа 1926-1985. године, све године периода су рангиране по водности, примењујући исти критеријум као и за предхоцне случајеве. Укупан број средье водних година је $30(50 \%$, водних 12 , веома водних 3, сушних 12, веома сушних 3. И ови резултати показују правилну заступњеност сушних и водних периода, па се низ прихвата за репрезентативни. Јецино се на Црници нису још појавиле катастрофално сушна и катастрофално водна, тј. гоцине са протицајем мањим од $1,25 \mathrm{~m}^{3} / \mathrm{s}$ и већим од 8,0 $\mathrm{m}^{3} / \mathrm{s}$. Иначе градација година по водности код Црнице је следећа: средње водне године су са Q од $2,75-4,50 \mathrm{~m}^{3} / \mathrm{s}$, водне од $4,5-6,0 \mathrm{~m}^{3} / \mathrm{s}$, веома водне од 6-8, сушне (2-2,75) и веома сушне ($1,25-2,0 \mathrm{~m}^{3} / \mathrm{s}$). И за Црницу важи правнло да се могу увести и ткз. прелазне године, ако се нађу на граници између једне у другу водност. Црница има релативно мали

коефицнјенат варијације годинњих протицаја (Сv=0,34), док је коефииијенат асиметрије криве расподеле скоро три пута већи ($\mathrm{Cs}=1,02$). По томе се Црница убраја у реке умереног колебања протнцаја; месечни протицаји имају већа колебаьа у лето и јесен, највећи коефицијент варијације је у августу (плусковите падавине), када је $\mathrm{Cv}=1,75$, а најмањи у марту ($\mathrm{Cv}=0,46$), таб. 41.

Таб. 41. - Средъе месечни и годиини протицаји Црнице (Параћин) у nepuоду 1926-1985.

Tab. 41. - Mean monthly and annual discharge of the Crnica river (Paraciin) in the period 1926-1985.

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год.
Qs	3.20	4.89	7.33	7.86	5.20	3.77	2.19	1.64	1.25	1.48	2.10	3.06	3.66
CV	0.60	0.62	0.46	0.64	0.67	0.90	0.83	1.75	0.88	1.17	0.86	0.79	0.35
σ	1.92	3.03	3.37	5.03	3.48	3.39	1.82	2.87	1.10	1.73	1.81	2.42	1.28

Честина појављивања годишњих протицаја условљена је режимом Црнице (плувијални), али и распоредом падавина. Најучесталији протицаји су у класи $2,5-3,0 \mathrm{~m}^{3} / \mathrm{s}$ са 15 појава од могућих 60, затим од $3,0-3,5 \mathrm{~m}^{3} / \mathrm{s}$ (13) и $4,0-4,5$ $\mathrm{m}^{3} / \mathrm{s}$ са 8 случајева. У класи Q од $1,0-1,5 \mathrm{~m}^{3} / \mathrm{s}$ имамо само једну појаву, пто исто важи и за Q од $7-8 \mathrm{~m}^{3} / \mathrm{s}$. Најводнија година по средње годишњем протицају је 1955. (7,85 $\mathrm{m}^{3} / \mathrm{s}$), а за њом по редоследу појављивања следе: 1937. ($7,20 \mathrm{~m}^{3 / \mathrm{s})}$, 1940. ($5,68 \mathrm{~m}^{3} / \mathrm{s}$). Најсушнија година је 1950 . ($1,33 \mathrm{~m}^{3} / \mathrm{s}$), потом 1946. и 1949. (2,08 $\mathrm{m}^{3} / \mathrm{s}$). У новијем периоду, после 1980. године имамо заступьеност већег броја суиних година, али и средњих, цок је незнатно водних, што се поклапа са распоредом отицања на Нишави. Предпоставља се, да ће тренд нешто сушнијих п срецње водних година бити настављен и у наредном периоду, с тим што су могуће чешће појаве поплавних таласа изазваних од јаких пљускова, јер живимо у климату са нешто наглашеним падавинама у топлијем делу године, а умањеним у хладнијем делу године.

У оквиру изучавања распореда сушних и водних периода, за режим Црнице су занимљива временска трајања протицаја, што је значајно ако се воде користе у привредне сврхе. Тако нпр. на Црници у Параћину протицај изнад 2,0 $\mathrm{m}^{3} / \mathrm{s}$ траје гоцишње просечно 190 дана, или 52%, изнад 5,0 $\mathrm{m}^{3} / \mathrm{s} 80$ дана, а изнад $10,0 \mathrm{~m}^{3} / \mathrm{s}$ само 30 цана.

Максималне воде на Црници јавльауу се најчешће у лето, мада су прнсутне и у осталом делу године. Апсолутни максимум од $116 \mathrm{~m}^{3} / \mathrm{s}$ осмотрен је 20. O6. 1970. године а осим тога, оне су се јавиле још 1967. п 1969. ($93,6 \mathrm{~m}^{3} / \mathrm{s}$), 1948. ($87,5 \mathrm{~m}^{3} / \mathrm{s}$). Велике воде се најчешће јављају у пролеће, март је са највећом честнном (14), затим следе априп, мај, јуни II фебруар (8-9), а летно-јесењи месеци, оц августа до новембра, нмају само по једну појаву велнких вода.

Минималне воде на Црници се крећу у просеку око $700 \mathrm{l} / \mathrm{s}$ (годишња вредност), мада у летно-јесеним месецима падну на испод $300 \mathrm{l} / \mathrm{s}$. Апсолутно минималне воде су од $100-200 \mathrm{l} / \mathrm{s}$. Најучесталије минималне воде са дужим временскнм трајањем су бнле у периоду 1945-1952. и 1926-1932. године. У тим гоцинама, минималне воде су биле испод 400 l / s. Мале воде испод $1,0 \mathrm{~m}^{3} / \mathrm{s}$, трају годмиње просечно 280 цана. Најчешће се јавлају у лето и јесен, август и септембар су са највиие појава минималних вода, по 17 случајева, па онда октобар (12). У другим месецима, мале воде се ретко јављају, ито је последица утицаја мањег испаравана и већег прилива воде из издани.

ОПMITИ ЗАКЉУЧAK

У раду је проучена цикличност сушних и водних периода на већим рекама у Србији. Обрађен је 150-годишњи период Дунава у Бердапу, а 60 -годишњи на осталим рекама. Цикличност мизова тестирана је помоћу вице метода које се данас прнменују у савременом свету. У оквиру тога, проучена је честина појавливања сушних и водних година, са класификацијом њихове воцности, уз осврт на прогнозу промена карактернстика отицања у наредним годинама. Анализирани су критеријуми за избор меродавних хидролошких низова на нивоу месечних, сезонских и годишњих вредности. Осим Дунава, обрађене су Тиса, Сава, Дрина, Лим, Велика Морава, Западна Морава, Ибар, Нишава и Црница.

Дунав. - Анализом цикличности отицања, Дунав је у Бердапу за последњих 150 година (1840-1989) имао четири хидролошка циклуса, од којих се последњи завршава 1982. године. Сваки циклус садржи један сушнији и један влажнији период. Први циклус трајао је 29 година (1853-1881), слабије је изражен, сушнији период тог циклуса је знатно дужег трајања у односу на влажнији, док је други циклус веома правилно изражен и дужег трајања (45 гощина), а обухвата време од 1882-1926. године. Просек овог циклуса је $5323 \mathrm{~m}^{3} / \mathrm{s}$, који

је оц 150-годишњег сушнијп за 2%. Трећ̆и циклус (1927-1942) је веома кратког трајана (16 rодина), са прелазом из сушног у влажни 1935. године; у њему су најводиије године 1940, 1941. и 1942, после којих наступа сушни период као део поспеднег четвртог циклуса (1943-1982), који је трајао 40 година са прелазом из једне у другу карактеристичну водност 1964. године. Овај хидролошки циклус је водннји за 4% од вннегоднинег просека.

Прогноза далих кретана промена карактеристика отицана на Дунаву могла би се свести на то, да 放 се сушнији период који већ сада траје наставити и у наредним годинама овог и првој деценији наредног века. Прогнознра се да би у наредном сушнијем делу V-ог хидролошког циклуса који је почео после 1982. године било заступљено внше сушних година, мада нису искључене и веома водне, односно просек овог сушнијег дела V-ог циклуса би био испод вишегодишњег просека ($5456 \mathrm{~m}^{3} / \mathrm{s}$), тј. око $5100 \mathrm{~m}^{3} / \mathrm{s}$, са дужином трајања од око 20 година. У њему би, као и у свим предходним циклусима била могућа појава једног влажнијег мнкроциклуса са 2-3 влажне године. Нису искључене и веома сушне са средње годишњнм протицајем испод $4000 \mathrm{~m}^{3} / \mathrm{s}$, јер је последња таква година била 1949, док је последња сушна бнла 1983. година. Веома водна је била 1970, а водна 1981. година.

Што се пак тиче максимапннх і м минималних протицаја, строго узев, законитост њиховог појављивања није везана за цикличне појаве, већ су то случајни процеси. Протицаји изнад $10000 \mathrm{~m}^{3} / \mathrm{s}$ су веома чести на Дунаву. Последња година са $\mathrm{Qmax}=14800 \mathrm{~m}^{3} / \mathrm{s}$ је била 1981, затим 1942. (14700 $\mathrm{m}^{3} / \mathrm{s}$), па тек онда 1970 . ($14310 \mathrm{~m}^{3} / \mathrm{s}$). Једина хронологија у погледу цикличности влажних периода јесте, што се према подацима за последњих 80 година максимални протицаји изнад $10000 \mathrm{~m}^{3} / \mathrm{s}$ увек јављају сваке седме године. Следећи овај континуитет, наредни слични максимум могао би да се очекује у 1995. и 2002-ој години.

Минималне воде имају сличне осцилације као и велике, али им је највећа честина бнла у периоду 1943-1954. године. У 150-годишњем периоду забележено је 54 године са Qmin мањим од $2000 \mathrm{~m}^{3} / \mathrm{s}$. И у наредном периоду може се очекивати више година са сличним протицајем.

Tиса. - Променљивост протицаја Тисе је велика, па се сушни н водни периоди различито понашају у односу на друге веће реке. Пета деценија (1971-1980) периода 1931-1990. је имала вишак отицања од чак 14%. Код осталих 5 деценија ова

одступања су толерантна, па се њихови просеци прнхватају као меродавнн за изучаване режима Тисе на нивоу годишњих протицаја, што исто важи и за 20-годииње периоде, јер три нзабрана таква низа имају отицање приближно вицегодишњем. Ha Тиси је у проучаваном периоду било 33 године средне водности, 11 сушних, 2 веома сунне, 12 водних и 2 веома водне.

Што се тиче прогнозе далих промена отицања Тисе, следећи аналогију водности година 60-годмињег периода, може се у нарецним годинама очекивати више средње водннх са протицајем од $550-950 \mathrm{~m}^{3} / \mathrm{s}$, јер је последња таква година била 1988., уз појаву неке сушне године, јер је за задьих 10 година знатно вине водних година. Исто тако, веҺа је вероватноћа да се по краја овог века појави веома сушна са Qs од $350-450 \mathrm{~m}^{3} / \mathrm{s}$, него веома водна са Qs од 1300-1700 $\mathrm{m}^{3} / \mathrm{s}$ јер је прва последња 1961, а друга 1970. година.

Сава. - Према истраживањима цикличности отицања у периоду 1856-1989, Сава је имала више циклуса са израженим водним и маловодним периодима. Првп циклус је трајао од 1856-1882. године са сушним периодом од 1856-1867. и влажним од 1868-1882. године Следећи циклус је од 1883-1920, при чему је влажни период знатно дуже трајао (1891-1920). Tрећи циклус је од 1921-1953. гопине, а четврти од 1954, који и дале траје.

Међутим, на Сави је обрађен и 60-годиишьи период (Сремска Митровица), па се за њега може рећи, да од укумно 6 деценија, четири су цикличне, пок друге две имају већа одступања. Она се појављују код друге (1936-1945) и треће (1946-1955). Друга је влажнија за 12%, а трећа суинија за 10%. Иначе, три изабрана 20-годишња периода на Сави су циклична. За последњих 60 година, на Сави је било највише година средње водности, преко 50%, а затим сушних (14) и водних (8). Очекује се већа честина водних година, али су могуће и веома сушне, јер је последња таква 1946. година.

Дрнна са Лнмом. - Због мање осцилације протицаја на Дрини се краћи периоди мање разликују оп отицања вишегодишњих низова. Тако свих цест деценија периода 1926-1985. су са приближно истим отщцањем. То исто потврђују и три изабрана 20-годишња периода. На Дрини се могу издвојити два циклуса нејецнаког временског трајања, један од 1926-1960, и други, од 1960-1982. Влажнији пернод првог циклуса је од 1926-1944, а сушннји од 1945-1960. Влажнији перпод другог циклуса је од 1961-1982. године, одакле дале

настаје нешто сушније допа. На Дрини је за послецних 60 година било највине година средне водности (32), сушних је 13, а водних 11. Само су по иве веома суине и веома водне.

На Пиму се распоред сушних и водних периода разликује од Црине. Само су три пеценије периода 1926-1985. цикличне, прва, друга и пета, а у остале три постоје одступања, која се крећу од $10-12 \%$. Међутим, 20-годишњи периоди углавном прате вишегодинње низове, добијених из осматрања од око 60 година. У сва трн изабрана 20-годишна низа протицаји се крећу од $81,1-84,4 \mathrm{~m}^{3} / \mathrm{s}$, што је у оквиру $60-$ годншњег просека ($81,1 \mathrm{~m}^{3} / \mathrm{s}$).

Велика Морава. - У сливу Велике Мораве је неповолан временски, просторни и висински распоред вода. Уз то, на њој су честе и нагле промене протицаја. Као последица тога, постоје битније разлике у отицању између појединих периода. Просечан протицај 60-годишњег периода (1931-1990) је $238 \mathrm{~m}^{3} / \mathrm{s}, 1951-1980, \mathrm{Q}=257 \mathrm{~m}^{3} / \mathrm{s}$, и $1951-1990, \mathrm{Q}=247 \mathrm{~m}^{3} / \mathrm{s}$. Десетогодишњи низови још и више одступају. У већини деценија отицања су значајно већа од нормалне вредности. Те разлике иду и до 15%. И 20-годишњи периоди не морају увек да буду мерило оцене режима реке, јер се и ту јављају велике разлике. Као заклучак би могао да следи, да треба бити обазрив код избора низова и оцене њихове репрезентативности у изучавању режима Велике Мораве н њених притока, а нарочито у решавању водопривредних проблема, којих је у сливу Велике Мораве напретек. У 60-годишњем периоду је било знатно више воцних од сушних година. Очекује се чешћа појава сушних и година средње водности до краја овог века. У обрађиваном периоду је највиие гоцина средње водности са Q од $175-275 \mathrm{~m}^{3} / \mathrm{s}$, а потом водних (16). Сушних је само 8 , а веома водних и веома сушних 2-3 године.

Западна Морава са Ибром. - на Запацној Морави су сличне осцилације протицаја као на Великој Морави. Скоро свих 6 деценија 60-годишњег низа имају већа одступана, која иду и преко 15%. Међутим, 20-годишњи периоди се мање разликују, па се они углавном узимају као репрзентативни за израду хидролошких подлога неопходних за кориићење вода Западне Мораве. На Западној Морави је правилан распореп година по честинн појавливања одређених протицаја. Најзаступъенији протицаји су у класи од $25-30 \mathrm{~m}^{3} / \mathrm{s}$, или протицаји који су у рангу средње водних година. Њих је у обрађиваном периоду 32, сушних и водних је по 11 , а веома водних и веома сушних по 3. Сушни период који већ сада траје наставиће се и у наредним годинама, са внше појава средње водних и сушних година.

Ибар се у погледу распореда отицања нешто разликује од Западне Мораве пре неговог уића. Десетогодишни просеци могу да се разликују и преко 30%. Највећа је разлика у периоду 1936-1945. ($\mathrm{Qs}=58,6 \mathrm{~m}^{3} / \mathrm{s}$), који нма вишак отицања од $31,4 \%$. За разпику од деценија, три нзабрана 20 -годишша периода су по правилу увек цилкични, и эихови просеци се крећу око вишегодишње ($44,6 \mathrm{~m}^{3} / \mathrm{s}$).

На Ибру је бно правилан распоред сушних, водннх и година средње водности. Приближно је 50% година са протицајем од $32,5-52,5 \mathrm{~m}^{3} / \mathrm{s}$ (средње влажне године), сушних је 9, а веома сушних 4. У сличном односу су и водне (11) и веома водне (3) године. И на Ибру ће бити настављен тренд чешћих сушних и средње влажних година. Максималне воде Һе се и дале са великом вероватноћом јављати у пролеће или крајем зиме, могу се очекивати појаве катастрофално сушне и катастрофално водне године са Q мањим од 20,0 и већим од $105 \mathrm{~m}^{3} / \mathrm{s}$.

Нишава и Црница. - Колебања протицаја расту са смањењем површине слива. Зато су она већа на Нишави и Црници, јер су то најмањи сливови обрађени у овом раду. На Нишави се најчешће појавлују средње водне године, у просеку сваке друге, њих је у обрађиваном периоду 29 , водних је 16, веома водних 2 , док је сушних 10 и веома сушних 3 године. Као што се види, постоји сагласност и у погледу броја појављених година по карактеристикама њнхове водности, па се низ 1926-1985, прихвата као цикличан. Прогнозира се да би нешто сушнији период који већ сада траје, могао да буде настављен и у наредним годинама, с тим, што би бно заступљен већи број година са протицајем од $20-30 \mathrm{~m}^{3} / \mathrm{s}$.

Прогноза кретања веома сушннх и веома водних

 година. - У прегледној табели 42. је упоредни приказ веома сушних и веома водних година, које се код већине река јављају у просеку сваке $20-30$ године. То су протицаји ређе честине појава, па им се, с обзиром на значај у изучавању режима реке поклања посебна пажња. На Дунаву је знатно више веома водних година, последња таква је 1970, а за скоро половину је мање веома сушних. Последња таква је 1949. До краја овог и у првој деценији наредног века, треба очекивати више веома сушних година са протицајем оц $3500-4000 \mathrm{~m}^{3} / \mathrm{s}$.На Thсн и Савн је већа вероватноћа да се појави веома сушна, јер су такве године биле 1961. и 1946, него веома водне, које су на обе реке биле 1970. За Дрину важи супротан закључак. На њој су веома сушне 1982. и 1983, док је последња веома водна 1955. У ближој будућности на Дрини се дакле могу појавити веома водне године. То исто важи за

Лим, док се Велика Морава, Западна Морава и Ибар у томе понашају као Тиса, Сава и Дуиав. На све три реке је веһа вероватноћа да се појаве веома сушне, него веома водне гоцине. Међутим, на Нишави и Црници могу да се појаве и веома сушне и веома водне, јер је прва последња бнла 1950, а друга 1955. година.

Таб. 42. - Прелед веома сушних и веома водних година на рекама у Србији (за Дунав период од 150 година, а за остале реке 60 година).

Tab. 42. - A review of a most droughtly and most watery years of Serbias rivers.

Река	Профил	Веома сушне године	Веона водне године
Дунав	Ђердап	$\begin{aligned} & \text { 1921, 1866, 1943, 1894, } \\ & 1949 \end{aligned}$	$\begin{aligned} & 1970,1941,1937,1965 \\ & 1940,1926,1955,1853 \\ & 1879,1919 \end{aligned}$
Tиса	Сента	1943, 1961.	1941, 1970.
Сава	Срен. Митров.	1949, 1946.	1937, 1955, 1940, 1970.
Дрина	Бајина Башта	1983, 1982.	1937, 1955.
Лим	Пријепоље	1943, 1983.	1955, 1929, 1979.
Велика Морава	Љубичевски Мост	1943, 1933.	1955, 1937, 1956.
Зап. Морава	Гугальски Мост	1951, 1950, 1953.	1955, 1937, 1970.
Ибар	Рашка	1972, 1943, 1985, 1968.	1955, 1942, 1937.
Нишава	Бела Паланка	1949, 1943, 1946, 1950.	1955, 1948, 1937.
Црница	Парћин	1946, 1949, 1950,	1937, 1940, 1955.

Напомена: редослед година је по величини протицаја (за веома сушне оп најнижег, а веома водне од Q највећег)

Меродавни хидролошки низови. - У изучавану режнма река, веома је битно да се изаберу щиклични низови који уклучују правилан распоред сушних и водних година. За реку Дунав, ове вредности су тестиране на нивоу месечних, сезонских и годишњих протицаја. За друге реке у Србији, низови су проверавани на нивоу годишњих вредности. Закључак је, да је за Дунав као реку са мешовитим режимом, пожељно узети низове од око 25 година, ако се анализирају годишње вредности, 35 година за сезонске, а око 50 година за месечне протицаје. За све ове случајеве, могу се изабрати и краћи низови, али је њихову цикличност нужно проверити са станицом која има дуже низове осматрања.

За мане речне сливове дужина репрезентативног низа зависи од повриине слива, климата, речног режима и колебања протицаја. Најдужи низови су код малих река са плувијалним режимом, или код оних река у којих су колебања протицаја највећа. За све ове реке морају се утврдити дужине низова и тестирати њихова цикличност.

Л ИТ ЕРATYYA

1. Гидрологнческая монография водосборного бассейна Дуная-Том I. Водохозяственный институт имени "Яарослав Черни", Союзный гидрометеорологический институт, Белград, 1978.
2. Гидропогический справочник реки Дунай 1921-1960. Дунайская комиссия, Будапешт 1965.
3. Годншњи прегпеди протнцаја Дунава у Кладову за пернод 1972-1992 (изворни подаци). Хидроелектрана "Бердап", Кладово,1993.
4. Гавриловић Љыљана: Поппаве у Србнјп у ХХ веку узроци л поспедице. Посебна издања Српског географског друштва, књ. 52, Веоград, 1981.
5. Дукић Душани: Воде Србије. Посебна издања Српског географског друштва, књ. 44, Београд, 1977.
6. Discharges of selected rivers of the world-studes and reportes in hydrology, UNESCO, Paris, 1974.
7. Зеленхаснћ Емир, Бугариновић Нада: Учесталост внсина падавина у Србнјн, "Водопривреда", бр. 62, Веоград, 1979.
8. Jevdevic Vujica: Hidrologija I deo, Institut za vodoprivredu "Jaroslav Černi", Beograd, 1956.
9. Karakteristične vode, učestalost itrajanje proticaja na izabranim stanicama u Srbiji za period 1926-1965. RHMZ (elaborat), Beograd, 1989.
10. Лучщrева Александра А. : Практическая гидрология. Гидрометеоиздат, Ленинград, 1976.
11. Milovanov D.: Vodoprivreda Vojvodine 1918-1945. Posebna izdanja, Vode Vojvodine, Institut za uredenje voda, Novi Sad, 1987.
12. Ocokoljic Miroslav: Visinsko zoniranje voda u slivu Velike Morave i neki aspekti njihove zaštite. Posebna izdanja Srpskog geografskog društva, knj. 64, Beograd, 1987.
13. Оцоколић Мпрослав: Варнјацнје протицаја на рекама у Југоспавнји, Гласник Српског географског друштва, св. LXXI/1, Београд, 1991.
14. Ocokoljic Miroslav: Rez̆imske karakteristike srednjih voda usvojenog trajanja i neki primeri njihovog odredjivanja. Zbornik radova Jugoslovenskog simpozijuma o inženjerskoj hidrologiji, Split, 1983.
15. Оцокољнћ Мирослав: Последовательность декадных расходов на нижнем течении рекн Сава н возможность ведения их прогноза. Зборник докладов - VIII Конференция придунайских стран по гидрологическим прогнозам, Regensburg, 1975.
16. Ракићевић Томислав: Секуларне промене кпиме Београда. Гласник Српског географског друштва, св. LXIII/2, Beоград, 1983
17. Rhodes W. Fairbridge.: Enciklopedia of atmospheric sciens and astrogeology, New York, Amsterdam, London, 1967.
18. Rezultati osmatranja meteoroloske opservatorije u Beogradu u periodu 1887-1986. RHMZ, Beograd, 1989.
19. III Seminar iz hidrologije. Zbornik predavanja iz hidrologije, Jugoslovensko društvo za hidrologiju, Beograd, 1977.
20. Hidrološka studija Save, SHMZ, Beograd, 1969.
21. Hidrološki bilans Dunava, sv. I-IV. Savezni komitet za poljoprivredu, Institut za vodoprivredu "J.Černi", SHMZ, Beograd, 1977.
22. Hidrološka studija Save-1974. Koordinacioni odbor projekta Save-Zagreb. Institut za vodoprivredu "J.Černi", Beograd, 1976.
23. Hidrološki i meteorološki godišnjaci od 1951-1985. SHMZ, Beograd, 1985.

[^0]: $\begin{array}{llllllllllllllll}\text { Q (m3/s) } & 200 & 175 & 150 & 120 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 2\end{array}$
 $\begin{array}{llllllllllllllll}\mathrm{T} & \text { (dani) } & 4 & 5 & 7 & 10 & 16 & 20 & 26 & 33 & 43 & 60 & 84 & 123 & 187 & 284 \\ 356.2\end{array}$

