D-r Pavle Vujević, profesor

Podneblje FNR Jugoslavije

Sadržaj: Opšti uslovi. Termičke osobine vetrova i tišina. Raspodela pritiska u ekstremnim mesecima. Klimatski uticaj depresija. Strujanje vazdušnih masa. Provale polarnih vazdušnih masa. Promene temperature sa Sirinom. Promene temperature sa dužinom. Promene temperature sa visinom. Termički tipovi. Kolebanje temperature. Inverzije. Mraz. Ekstremne temperature i kolebanja. Relativna vlažnost. Oblačnost. Trajanje osuncavanja. Raspodela padavina. Pus. Udeo snega ù godišnjim padavinama. Snežni pokrivač. Nepogode. Grad. Čstina tišina i vetrova različite jačine.

Opstiuslovi

Osnovne klimatske odlike Jugoslavije uslovljene su njenim položajem na zemljinoj kugli, dakle graničnim geografskim širinama s jedne, i srazmernom blizinom Sredozemnog Mora s druge strane. Kopnena granica Jugoslavije dodiruje se na jugozapadu s Jadranom, od utoke reke Mirne do utoka Bojane, a odatle do Ohridskog Jezera ona je udaljena od Jadrana oko 80 do 100 km . Jugoistočna granica Makedonije na sličnom je otstojanju od Egejskog Mora.

Trajanje i jacina Sunčevog zračenja menjaju se u toku dana i u toku godine s geografskom širinom. Najduži dan se povećava s povećanjem širine, najkraci dan se smanjuje u istom pravcu. Mogućno trajanje Sunčevog zračenja povećava se od aprila do septembra, a smanjuje se od oktobra do marta s povećanjem širine, dok se intenzitet totalnog Sunčevog zračenja, tj. onog koje padne upravno na površinu, smanjuje prema višim geografskim širinama. U vezi s ovim činjenicama menjaju se i uslovi primanja toplote, koji se ogledaju u raznim temperaturama.

Reljef zemljišta izaziva poremecaje kod ovih normalnih uslova, osobito znatno u planinskim krajevima, gde se smenjuju uzvišenja razne velicine s kotlinama, poljima i dolinama nejednako strmih i visokih strana. Pored s toga, doline pravcem, od severa na jug. Sličan pravac pružanja imaju i velika skim pravcem, od severa na jug. Sličan pravac pružanja maju 1 velika
kraška polja i većna kotlina u Jugoslaviji. Time je znatno olakšano prokraška polja i većina kotlina u Jugoslaviji. Time je zn
diranje polarnih vazdušnih masa u naše južne krajeve.

Treba spomenuti i važnu klimatsku činjenicu da voda ima oko dvaput vecu specifičnu toplotu od sastavnih delova kopna. Drugim rečima, da bi se kubni santimetar vode zagrejao za $1^{\circ} \mathrm{C}$, potrebno je da primi $1 \mathrm{~g}-\mathrm{kal}$, dok se ista zapremina peska ili crnice zagreje gotovo za $2^{\circ} \mathrm{C}$ istom količinom primljene toplote. Vazduh iznad ovih površina sleduje, uglavnom, istovremenim promenama njihovog toplotnog stanja, te se brze i jace zagreva i hladi iznad kopna, nego iznad vodenih površina. Sem toga,
vodene mase magaziniraju u letnjoj polovini godine oko 20 puta više toplotne energije od jednake kopnene mase na istoj širini, te je izdaju u zimskoj polovini godine. More je, iz pomenutih razloga, zimi dosta toplije, leti hladnije od kopna na istoj širini, pa se to ogleda i u temperaturama prizemnih vazdusnih slojeva. Srednja temperatura na pucini povrsine Jadrana je, krajem zime, oko $7,5^{\circ}$ na severozapadnom, $13,5^{\circ}$ na jugoistočnom delu, dok su, krajem leta, odgovarajuće vrednosti 22° i 25°. Temperatura je, pri obalama, nešto niža krajem zime, nešto viša krajem leta. Površinske vode Egejskog Mora imaju slične termičke uslove kao južni deo Jadrana.

Jugoslavija se zbog velike horizontalne i vertikalne razgrane razlikuje isto tako klimatološki, kao što se razlikuje geološki i geografski. Ona pretstavlja prelaznu oblast od maritimnog prema kontinentalno uplivisanom podneblju. Sa severa se uvlače u našu zemlju pustare Panonske nizije, kao nastavak poljskih i ukrajinskih stepa, dok sa zapada često prodiru vazdušne mase maritimnog porekla, i na svoj način uplivišu na podneblje Jugoslavije. Već san površinski oblik naše zemlje uslovljava dosta složen sistem različitih uticaja na podneblje, kome se pridružuje još i širinska razlika od 6° izmedu Prekomurja i Prespanskog jezera.

Termičke osobine vetrova i tišina

Na klimatske prilike svake zemlje utiče, u znatnoj meri, prosečna raspodela vazdušnog pritiska u određenom vremenu, danu, mesecu ili nekom godišnjem dobu. Posledica te raspodele je prodiranje raznih vazdušnih

> Tab. 1. Termicka ruža vetrova Hvara i Beograda u otstupanjima od normalne temperature
> Thermal wind rose of Hvar and Belgrade, showing the deviation from normal temperature

Pravac vetra Wind direction	N	NE	E	SE	S	SW	W	NW	C	Norm. temp. Normal temp.
$\frac{H v a r}{\text { Januar January }}$										
Temperatura Temperature	-1,9	$-2,7$	-0,4	2,5	2,7	3,2	2,6	0,9	0,1	8,60
Čestina Frequency	386	253	482	336	69	14	28	222	70	
Jul July										
Temperatura Temperature	-1,1	-0,1	0,0	0,8	2,5	2,6	1,1	-0,2	$-0,8$	$25,1^{10}$
Čestina Frequency	289	139	149	235	109	20	211	437	271	
Beograd										
Januar January										
Temperatura Temperature	$-0,8$	-1,2	0,1	1,1	5,3	3,5	-0,5	-0,8	-0,7	$-0,2^{0}$
Čestina Frequency	127	40	231	558	99	79	314	234	736	
Jul July										
Temperatura Temperature	$-1,1$	2,6	2,5	2,5	3,8	0,8	$-1,9$	-0,2	$-0,6$	23,00
Čestina Frequency	148	64	63	220	78	109	451	367	918	

masa sa različitim svojstvima, tj. vazdušnih masa različite temperature, vlažnosti vazduha, providnosti i uslova za obrazovanje oblaka i padavina iz njih. Poznato je da velika razlika u vremenu nastane ako, recimo, posle severnog vetra duhne iznenadno vetar sa zapadnog ili južnog kvadranta.

Kao primer će poslužiti kolikom se prosečnom temperaturom odlikuju vetrovi iz raznih pravaca i tišine u januaru i julu na Hvaru i u Beogradu, u periodu od 20 odn. 26 godina (tab. 1). Termicke osobine vetrova i tisina jasnije se ističu ako se za njih izvedu otstupanja od normalne temperature vazduha u svakom od ta dva meseca, kao što je učinjeno u tab. l. Vetrovi s pozitivnjeno u tab. 1 . Vetrovis pozitiv-
nim otstupanjem temperature od normalne vrednosti su topli, a s negativnim otstupanjem su hladni, i to prema velicini otstupanja. To se osobito lepo vidi iz grafičkog prikaza (slika 1), u kome poluprečnik kruga odgovara normalnoj temperaturi. Otstupanja su označena na pravim linijama: unutar kruga negativna, izvan kruga pozitivna, prema merilu u sredini slike. Otstupanja kod tišina upisana su u malom krugu oko središta. Vetrovi sa istoka imaju zimi obično nižu a leti višu temperaturu od normalne, dok je obrnuto kod vetrova sa zapada. Oni su leti, relativno, po veličini otstupanja za $1,5^{0}$ hladniji, nego zimi. Ali su istočni vetrovi uvek znatno suvlji od zapadnih. Vetrovi s južnog kvadranta su najtopliji u toku cele godine, i vlažni, a vetrovi sa severnog kvadranta su najhladniji, ujedno i suvi.

Raspodela pritiska u ekstremnim mesecima

Da bi se dobio opšti klimatski pregled naše zemlje, uzeće se u pomoć raspodela vazdušnog pritiska u dva ekstremna meseca, januaru i julu (sl. 2 i 3). Uporedenje ovih izobarskih karata pokazuje, na prvi pogled, znatnu razliku između zime i leta s jedne, a severozapadne i jugoistoc̃ne Evrope s druge strane.

Severni deo Evrope, severno od srednjih planina preko Poljske nizije i Pripetskih Bara do sliva Volge, nalazi se zimi pod uticajem široke jugozapadne vazdušne struje, kojom je preplavljena cela ta oblast, usled naglog smanjivanja vazdušnog pritiska prema severozapadu. Nasuprot tome, južno od pomenute granične linije uvlači se prema jugozapadu zimski azijatski anticiklon, kao što to pokazuje izobata od 765 mm , koji se poveže sa Azorskim maksimumom na zapadu. Planine Alpi, Karpati i Bihar sa Banatskim Planinama, Starom Planinom i planinama istočne Srbije ističu se jezgrima visokog pritiska, dok se toplo Sredozemno More, s njegovim ograncima, odilkuje predelima znatno nižeg pritiska, naravno redukovanog na morski
nivo. Balkansko Poluostrvo pokazuje u januaru najoštrije suprotnosti između okolnih mora i kopna, što se naročito ogleda u zbijenosti izobara duž jadranske obalé. Dalje se iz karte vidi kako je cela Jugoslavija prisajedinjena azijatskoj oblasti, jer je pritisak gotovo svugde veći od 765 mm , ali se pravilno smanjuje prema jugozapadu, jugu i jugoistoku. Posledica toga su preovlađujući vetrovi sa severnog kvadranta.

S1. 2. Januarske izobare svedene na mor ski nivo (po V. Gorčinjskom)
The January isobars reduced to sea ievel (W

SI. 3. Julske izobare svedene na morski nivo (po V. Gorčinjskom)
The July isobars reduced to sea level (W)
Gorczynski

Sasvim drugačiji uslovi vladaju leti. Severna Evropa je preplavljena vetrovima sa zapadnog kvadranta i u mesecu julu, no više iz pravea zapadseverozapad. Ali je Južna Evropa, leti, sasvim povezana s ostalim delom Evrope, jer se visok vazdušni pritisak proširuje, u dugačkom jeziku, od Azorskog maksimuma do Istočnih Karpata. Toga radi je razvijen veći pritisak od 760 mm u najvećem delu Jugoslavije. Ova je, po takvoj raspodeli vazdusnog pritiska, izložena vazdusnim masama poreklom s Atlanskog Okeana, koje pretežno dolaze sa severozapada. Time su dosta ublažene velike žege, koje bi inače nastale usled geografskog položaja Jugoslavije, s velikim visinama Sunčevih kulminacija u tome godišnjem dobu.

Klimatski uticaj depresija

Treba istaći i činjenicu, da se barometarske depresije često kreću preko Evrope, pa i preko nekih krajeva naše zemlje. One proizvode veliki poremećaj u normalnoj raspodeli vazdušnog pritiska, a time uplivišu na vremenski karakter u tim vremenima. Iz sl. 4 se vidi da preko Jugoslavije i okolnih krajeva prolazi čitav niz putanja, kojima se depresije unapredno kreću češće ili ređe. Većina ovih depresionih putanja polazi od Ligurijskog Mora i ide preko severne Italije (putanja Va), dok jedan njen ogranak skrene na jugoistok i prolazi zapadno od Italije, uporedo s pružanjem Apenina (putanja Ve). Ostale putanje se razgranaju u severnom delu Jadrana, oko Tršćanskog i Riječkog Zaliva: jedna vodi na severoistok prema

Varšavi ($V b$), druga ide Posavinom i Podunavljem ka Ctnome Moru ($V c$), dok treća prolazi preko Jadrana i južne Makedonije prema Egejskom Moru $(V d)$; tu se razgrana u putanje $V d_{1}$ i $V d_{2}$. Sve su one važne za raspodelu

S1. 4. Putanje barometarskih depresija (po van Beberu, Vajkmanu i drugima)
Cyclone tracks (van Bebber, L. Welckmann, and others)
padavina po mesecima. Padavine su u vezi s vremenima najčešćih i najredih prolaza barometarskih depresija određenim putanjama. Prva uslovijavaju velike, a druga neznatne visine padavina u Jugoslaviji. Te odnose pokazuje tab. 2.

Tab. 2. Godišnji tok čestiné kretanja depresija određenim putanjama, u procentima godišnjeg broja
Annual variation of the frequency of cyclone movement on defined tracks, percentage of

Putanja Track	1	11	III.	IV	V	VI	VII	VIII	IX	X	XI	XII
IVb	2,4	3,1	5,5	3,9	5,9	9,8	14,5	17,3	11,4	11,0	10,2	5,0
Va	9,7	4,5	6,4	13,0	5,8	0,7	0,6	2,6	5,1	13,5	21,3	16,8
Vb	4,2	5,1	8,8	11,4	13,0	10,2	10,2	6,3	8,6	8,9	9,5	3,8
Vc	3,7	4,5	7,6	13,0	7,6	18,5	9,8	3,6	4,1	8,7	13,0	5,9
Vd	8,1	85	13,7	11,4	6,2	4,7	4,2	5,3	5,7	10,4	10,9	10,9
Vd_{1}	8,1	12,2	13,5	10,8	6,1	4,0	1,3	2,0	6,8	11,5	12,2	11,5
Ve	20,7	16,1	11,5	11,5	8,0	1,2	1,1	0,0	1,2	9.2	9,2	10,3

Putanja $I V b$, s pravcem od Atlanskog Okeana preko Baltičkog Mora, prilično je važna za padavine u najsevernijim krajevima Slovenije, jer je depresije upotrebe najčešce u dva najtoplija meseca, čime su izazvane najnajčešće kiše utoku leta (primer Obir, Maribor u tab. 7 i Maribor na sl. 14). Rano prolećni maksimum kiše (mart ili april), koji je ograničen na širi pojas uz jadransku obalu, u neposrednoj je vezi s najvećom čestinom depresija u tom dobu godine na putanji Vd. Isto je tako rano letnji maksimum kiše (jun ili maj) u unutrašnjosti zemlje u vezi s velikom čestinom depresija u tim mesecima na putanji $V b$, i osobito na putanji $V c$. Najzad je jesenji maksimum padavina a celoj zemlji (oktobar ili novembar) prouzrokovan cestim kretanjem depresija u ovom godišnjem dobu na putanjama $V a, V b$, $V c, V d$ i $V d_{1}$. Putanja $V c$ je sem toga značajna i za pojavu nepogoda, koje su najčešće leti u najvećem delu Jugoslavije. Putanja Ve, s druge strane, najviše je zauzeta depresijama od decembra do aprila, te delimično uslovljava pluviometrijski rezzim na celom Jadranskom Primorju.

Pozno jesenji i rano letnji maksimum padavina imaju podjednaku vrednost otprilike na liniji Čakovec-Banja Luka-Foča; zapadno odatle je izražitiji jesenji (primer: Novo Mesto, Bihać), a istočno, letnji maksimum kiše (primer: Tuzla, Bač. Vinogradi, Kragujevac; Beograd, sl. 14). Na severozapadu se, pored glavnog jesenjeg maksimuma, istucu sporedni letnji i prolecni maksimum kise (primer: Gorica, Rijeka; Pula, sl. 14) pod uticajem barometarskih depresija na putanjima $V b$ i $V c$. Na jugoistočnom delu države, otprilike južno od Jastrepca i Svrljiških Planina, nastaje prelaz u mediteranski pluviometriski režim, jer se junski maksimum kiše, koji vlada dalje na severu, premesti na maj ili april i postane sporedni maksimum padavina, dok se glavni maksimum pojavi 1 jednom od pozno jesenjih meseca, od oktobra do decembra (primer: Vranje, Bitola; Bitola sl. 14), ali pod uticajem depresija na putanji Vd. Maj, jun i oktobar imaju na toj granici podjednakı srednju visinu kiše (primer: Niš, tab. 7 i sl. 14).

Strujanje vazdušnih masa

Prosečna strujanja vazdušnih masa, koja su uslovljena raspodelom vazdušnog pritiska u određenom vremenu, takođe su potrebna za prikaz klimatskih prilika u Jugoslaviji, jer od njih zavise mnoge druge klimatske pojave. Toga radi su proračunati srednji vektorski pravei vetra za zimu i leto otprilike za 110 mesta, prema Lambertovom postupku. Prosečno vazdušno kretanje na svakom mestu označeno je debelom pravom linijom, a strelica na njenom vrhu pokazuje vektorski pravac. Pomoću ovih su kon struisane strujne linije, kao prikaz opšteg kretarja vazdušnih masa iznad Jugoslavije zimi i leti (sl. 5 i 6). Strujne linije su ucrtane samo tamo gde je pravac njihovog kretanja besprekorno utvrden vektorima okolnih stanica. Oblasti bez strujnica ukazuju da u njima ili nema jasno preovlađujućih prosecnih vazdusnih kretanja, ili je srednji vektorski pravac vetra u mestima neke oblasti uslovljen geografskim činiocima, naprimer uticajem velikog jezera (Titograd, Skadar) ili pravcem doline (Titovo Užice, Svrljig, Peć, Skopje), ili je čestina vetrova iz raznih pravaca netačno određivana.

Vazdušne mase iznad Jugoslavije zimi se, prosečno, kreću prema jugu i jugozapadu u zapadnoj, prema jugoistoku i jugu u istočnoj polovini države (si. 5), odgovarajući niskim pritiscima iznad Sredozemnog Mora i njegovih ogranaka. Veliko, otstupanje postoji na severoistočnom kraju države, Tu prizemne vazdušne mase struje prema severozapadu, a na višim širinama prema severu i severoistoku. To je oblast košave, koja se

- po srednjem vektorskom pravcu - proteže na jug otprilike do Paraćina, a na zapad do Novog Sada. S druge strane, pri obali Jadrana, uticaji bure ističu se i u zimskim srednjim vektorskim pravcima vetra od Trsta do Drača

Sl. 5. Srednji vektorski pravac vetra \mathfrak{u} raznim mestima i vazdušno strujanje u januaru ($1=$ sr. vektorski pravac vetra pri zemlji; $2=$ sr. vektorski pravac

Mean vector wind direction in various stations, and air flow in January $(1=$ mean vector
direction of wind on land; $2=$ mean vector direction of wind in the height; $3=$ air streams
Leti se vazdušni pritisak iznad naše zemlje uglavnom smanjuje od severozapada na jugoistok, pa bi vazdušne mase trebalo da se, prosečno, kreću ka jugu, jugoistoku i istoku, a to u velikoj meri pokazuju srednji vektorski pravci vetra. Ipak, u istočnoj polovini države preovlađuje strujanje vazduha prema istoku i jugoistoku, otprilike do 43° sev. šir., a južnije uglavnom prema jugu. Ovakvo prosečno kretanje vazdušnih masa postoji i na zapadu, sa izuzetkom najvećeg dela Slovenije. Tu je vazdušno strújanje prema zapadu i jugozapadu izazvano velikom izvijenošću izobare od 761 mm prema istoku-jugoistoku, severno od Istre, dakle opet opštom raspodelom vazdušnog pritiska (v. sl. 3).

Provale polarnih vazdušnih masa

Napred pomenute činjenice o prosešnom strujanju vazdušnih masa utiču i na termičke uslove prizemnih vazdušnih slojeva. Vazdušne mase
kod nas se poglavito kreću od viših prema nižim širinama, dakle iz bladnijih prema toplijim krajevima. Ali, vazdušna temperatura se prilično izjednači na raznim širinama pri prodiranju polarnih vazdušnih masa. Takav je

S1. 6. Srednji vektorski pravac vetra u raznim mestima i vazdušno strujanje u julu
($1=$ sr. vektorski pravac vetra pri zemlji; $2=$ sr. vektorski pravac vetra na visini; $3=$ strujtice
Mean vector direction of wind in various stations and air flow in July $(1=$ mean vector direction
of wind on land; $2=$ mean vector direction of wind in the height; $3=$ air streams $)$
slučaj bio 1 marta 1932, kad je anticiklon ležao nad južnom polovinom Skandinavije i nad delom Srednje i Istočne Evrope, a pružao se od Islanda na jugoistok sve do Jonskog i Crnog Mora (sl. 7). Vetrovi su kod nas poglavito duvali sa severnog kvadranta, donoseći izvanrednu hladnoću za taj dan. Minimalna temperatura kretala se od -20° do -16^{0} u Vojvodini i Severnoj Srbiji, od -15^{0} do -11^{0} u Sloveniji i Severnoj Hrvatskoj, od -18° do - 16° u Makedoniji, dok na primorju nije bila niža od - 1 do $4^{0} \mathrm{C}$. Ali je karakteristično da je srednja dnevna temperatura toga dana bila \mathfrak{u} Srbiji s Vojvodinom i Kosmetom za 10° do 15^{0} niža od normalne temperature 1 marta, a u Makedoniji je bila za 10° do 17° niža od normalne

Provale polarnih vazdušnih masa mogu nastati i leti. Tako je visok pritisak, veći od 1025 mb, vladao 28 avgusta 1933 nad Baltičkim Morem i Srednjom Evropom, obuhvatajući Sloveniju i severni deo Hrvatske, otprilike do Pakraca i Slatine na istoku. Odatle se pritisak smanjivao ka jugoistoku, te je na liniji Lješ-Demir Kapija-Drama imao vrednost od 1015
mb. Pri takvoj raspodeli vazdušnog ptitiska vladali su kod nas uslovi za vetrove sa severnog kvadranta i za tišine. Zato su srednje dnevne tempe-

Sl. 7. Sinoptička karta od 1 marta 1932, a 7 ćasova, u milibarima Synoptic chart, 0700,1 March 1932 , in milibars ($H=$ low, $B=$ high pressure)
rature bile, na većem delu države, za 8^{0} do 17° niže od normalne temperature 28 avgusta, osobito znatno u Makedoniji, najjužnijem delu Jugoslavije, što svedoči o vèlikom izjednačenju temperature.

Promene temperature sa širinom

Napred je spomenuto da se vazdušna temperatura povećava prema nižim širinama u svim mesecima, pa i u prosečnoj godišajoj vrednosti, odgovarajući solarnim uslovima. To je prikazano u dijagramu (sl. 8) za tri mesta pri morskoj obali, koja su na podjednakoj visini iznad morskog nivoa, ali na raznim širinama. Iz crteža se vidi, kao i iz tab. 3, da se januarska temperatura između ova tri mesta brže povećava prema jugu od julske. Posledica toga je smanjivanje godišnjeg kolebanja temperature \mathfrak{u} istom
pravcu, (Trst $18,0^{\circ}$, Zadar $17,2^{\circ}$ Budva $16,6^{\circ}$). Amplituda godišnjeg kolebanja u najsevernijoj stanici, Trstu, bila bi još veća, a u najjužnijoj, Budvi, još manja, da prva stanica nema podjednak pluviometriski režim s Goricom (tab. 7), dakle kišovito leto i jesen,

Sl. 8 Promene ugodišnjem toku tempe-
Sl. 8 Promene u godišnjem toku tempe-
rature sa geografskim sirinama $(1=$ Trst; geografskim sirinama
$2=$ Zadar; $3=$ Budva)
The effect of latitude on the annual variation of
temperature ($1=$ Trieste; $2=$ Zadar; $3=$ Budva) a druga podjednaku raspodelu kiše po mesecima s Dubrovnikom i Kotorom, tj. veoma kišovitu zimu. Trst bi, inace, imao toplije leto, s povećanim kolebanjem a Budva topliju zimu, sa smanjenim kolebanjem temperature.

Promene temperature s dužinom

Drugačije se menja vazdušna temperatura od mora prema unutrasnjosti, usled pomenutih razlika u specifičnoj toploti. Temperatura se, normalno, zimi mnogo naglije smanjuje od obala prema unutrašnjosti, nego što se leti povećava. Posledice toga su da se godišnja temperatura smanjuje od morske obale ka unutrašnjosti, a amplituda godišnjeg kolebanja povećava. To, donekle, pokazuje sl. 9 za tri mesta na podjednakoj geografskoj širini, kao i tab. 3. Ali se, stvarno, samo zimska temperatura smanjuje prema unutrašnjosti, dok se leti javlja velika nepravilnost. Naime, letnje veoma visoke vazdušne temperature na ostrvima i u Primorju ne slažu se nikako s blizinom mora, koje treba da ima rashladjujuci uticaj u tom godišnjem dobu. To je delom posledica male oblačnosti u toku leta (tab. 6), delom golih krečnjačkih stena, od kojih su vecinom sastavljena ostrva i celo Primorje, i koje se leti veoma jako i naglo zagrevaju. Pored toga, i povišina Jadrana, kao ogranka Sredozemnog Mora, ima visoku letnju temperaturu, od 22° na severu do 25° na jugu, te nije u stanju da znatnije ublaži toplotne uticaje užarenog krša. Uzrok tome je, što je Sredozemno More sprečeno u slobodnoj komunikaciji s Atlantskim Okeanom dosta plitkim i uzanim Gibraltarskim Moreuzom. Lefnja temperatura na pucini Atlanskog Okeana od 45° do 40° sev. sit., odista, nije viša od $15^{0}-19^{0}$, dakle niža je za 7^{0} do 6^{0} nego na povišini Jadrana Zato se Kovačica, najkontinentalnija stanica a ovom primeru, odlikuje

SI. 9 Promene a godišnjem toku temperature od mora ka unutrašnjosti $1=$ Rijeka, $4 \mathrm{~m} ; 2=$ Karlovac, 111 m ; $3=$ Kovačica, 81 m)
The effect of sea and land on the annual vari-
ation of termperature ($1=$ Rijeka, $4 \mathrm{~mm}, 2=$ Karlo-
vac, $111 \mathrm{~m} ; 3=$ Kovačica 81 m ,
tek neštoj nižom julskom vazdušnom temperaturom od Rijeke. Iz sl. 9 se neposredno vidi kako se januarska temperatura vazduha naglo smanjuje prema unutrašnjosti, a julska se nepravilno, i u slabijoj meri, povećava. Dve stanice u unutrašnjosti pokazuju normalne uslove: Karlovac, oko 390 km zapadnije od Kovačice, ima zimi prilično višu a leti prilično nižu temperaturu od Kovačice, a po tome i smanjenu amplitudu godišnjeg kolebanja (Karlovac $20,3^{\circ}$, Kovačica $23,8^{\circ}$). Međutim, Rijeka, na obali Jadrana i oko 90 km zapadnije od Karlovca, ima još manje godišnje kolebanje temperature, $16,5^{\circ}$, u vezi s izvanredno visokom vazdušnom temperaturom u januaru.

Promene temperature sa visinom

Vazdušna temperatura se, najzad, normalno smanjuje i sa visinom u svima mesecima, ali zimi sporije, nego leti. Time je izazvano smanjivanje prosečne godišnje temperature, a u kontinentalnim planinskim krajevima smanjivanje amplitude godišnjeg kolebanja. Te uslove pokazuje sl. 10 za okolinu Bjelašnice. Vazdušna temperatura se između Ilidže i Bjelašnice u januaru prosečno smanjuje za 0.32°
na svakih 100 metara visine, a u julu za 0.62^{0}, dakle gotovo dvaput brže. U vezi s tim činjenicama menja se, s visinom, i klimatski karakter pojedinih godišnjih doba. Zima menja svoja svojstva s visinom sasvim sporo i neprimetno, dok leto, usled mnogo većeg opadanja temperature, postaje veoma prohladno na velikoj visini, a u vezi s tim menjaju se iz osnova i vegetacioni uslovi. Slične razlike postoje izmedu proleća i jeseni, što se jasno ističe i u sl. 10. Temperatura opada s visinom prosečno za 0.69° uprolece, a za 0.48^{0} ujesen. Odgovarajući manjem vertikalnom termičkom gradijentu, jesen biva s visinom, relativno, sve toplija od proleca. Tako je jesen u llidži za 0.7^{0} toplija od proleća, na Trebeviću za 1.7°, na Bjelašnici za 3.6^{0}.

Sasvim je drugačije u primorskim planinskim krajevima. Tamo

SI. 10. Promene u godišnjem toku temperature sa visinom ($1=$ lindža, $497 \mathrm{~m} ; 2=1$ rebević, $1600 \mathrm{~m} ; 3=$ Bjelašnica, 2067 m) e zimski vertikalni gradijent temperature, tj. opadanje na svakih 100
metara, znatno povećan, zbog jakog zagrevajućeg uticaja mora na mesta blizu morskog nivoa, dok je leti tek nešto veći, nego u kontinentalnim planinskim krajevima, usled toga što Jadran nema rashlađujuće dejstvo. lz tih se razloga godišnje kolebanje vazdušne temperature mora povećavati do odredene visine. Primer za to daje okolina Kotorskog Zaliva (vidi str. 14).

Ali, dok se amplituda godišnjeg kolebanja temperature povecava s visinom, razlika u normalnoj temperaturi oktobra i aprila je skoro nepromenljiva, usled jednakih vertikalnih gradijenata temperature u ta dva meseca. Veliki uticaj zalihe toplote, koja je magazinirana u moru u letnjoj polo-

Mesto Place	Visina Altitude	Januar January	April April	$\begin{aligned} & \text { Jul } \\ & \text { Juiy } \end{aligned}$	Oktobar October	Koleb. Range	$\begin{aligned} & \text { Razl. X-IV } \\ & \text { diff. X-IV } \end{aligned}$
Goli Vrh Goll Vrh	1308 m	$-2,2^{0}$	5, 1^{0}	16,00	$8,6^{0}$	18,20	$3,5^{\circ} \mathrm{C}$
Kosmač (SSI od Budve) Kosmač (NNE of Budva)	874	2,9	9,7	20,3	13,1	17,4	3,4
Vtmac (Z od Prčnja) Vrmac (W of Prčanj)	484	5,2	11,8	22,1	15,2	16,9	3,4
Rt Ostra Cape Oštra	64	8,3	14,1	24,0	17,6	15,7	3,5
Vert. gradijent Lapse-rate		0,840	0,72 ${ }^{\circ}$	0,64 ${ }^{0}$	0,72 ${ }^{\circ}$		

vini godine, najlepše se ogleda u znatno toplijoj jeseni od proleća do velike visine. Isto je tako januarski gradijent između Rijeke (4 m) i Učke (950 m) 0,720 , julski $0,67^{\circ}$, dok su odgovarajući gradijenti izmedu Crikvenice (2 m) i Ravne Gore (793 m) u januaru $1,06^{\circ}$, u julu $0,81^{0}$ Uzrok ovog prekoadijabatskog gradijenta je to, sto se tu nalaze jedni kraj drugih tople morske vode i hladne visine.

Termički tipovi

Godišnji tokovi temperature izneseni su u tab. 3 za veliki broj mesta u Jugoslaviij, pri čemu su uzeta u obzir i velika kraskka polja u dinarskom planinskom sistemu, ostala polja i kotline, kao sredista poljoprivrede (str: 15-17).

Najblaže podneblje vlada na ostrvima i na Primoriu. Ono se odilikuje srazmerno neznatnim dnevnim i godišnjim kolebanjem temperature, veoma blagom zimom, vrelim letima, i znatno toplijom jeseni od proleća (primeri: Gorica, Mali Lošinj, Palagruža, Mostar, Budva i dr.). Tu je godisnje kolebanje obično manje od 20°. Znatno ostrije, više subalpisko podneblje, imaju visoka kraška polja, koja su od Jadrana bilo odvojena visokim planinama, bilo udaljena od njega 40 do 80 knn (Gospic, Kupres, Gacko i dr.). Godišnje kolebanje nije ni tu mnogo veče od 20° (sil. 11), ali su januarske temperature vrlo niske, a dosta je niža temperatura i u ostalim, osobito letnjim mesecima. Jesen je oko 2^{0} toplija od proleća.

Velike i visoke venačne planine, ili masivi, provlače se i kroz druge krajeve Jugoslavije, a odlikuju se subalpiskim (Zapodnem, Sljeme, Kalinovik, Kolašin, Kruševo) i alpiskim odn. planinskim podnebljem (Obir, Trebević, Bjelas̆nica, Sveti Nikola). Srednja godišnja temperatura u prvim mestima je niska, $5,7^{\circ}$ do $7,8^{0}$, godišnje kolebanje temperature menja se od $17,4^{0}$ do $19,9^{\circ}$ i uglavnom se povećava prema jugoistoku. Usled nejednakog opadanja temperature s visinom, leta su na visokim planinama dosta hadna, oko 8^{0} do 13°, zima je duga i ostra, vrhovi su pod snegom po nekoliko. meseci. Prosečna januarska temperatura je čak i na Golom Vrhu, u Krivosijama, - $2,3^{0}$, dok je za 11° viša na Rtu Oštra. Bjelašnica ima gotovo iste toplotne uslove kao Obir, ma da je ovaj na približno 3^{0} visisoj geogr. sirinini. Godišnja temperatura je na oba planiinska vrha podjednaka, 0,70 odnosno $0,8^{\circ}$; na oba vrha su temperature od novembrá do aprila duboko ispod nule, a srednja julska temperatura nije viša od $9,5^{\circ}$. Jesen je znatno toplija od proleća na obe planine, oko $3,5^{\circ}$ a godis̆nje kolebanje temperature je dosta manje nego \mathbf{u} okolnim dolinskim mestima.

Mesta u nižim kotlinama, poljima i dolinama ovih planinskih krajeva imaju nisku januarsku temperaturu, prilično topla leta pa i povećano godišnje kolebanje temperature (Bohinjska Bistrica, Bos. Petrovac, Ilidže, Titovo Užice, Zagubica, Novi Pazar, Bosiljgrad, Kosovo, Metohija i Makedonija trebalo bi da imaju povoljnije toplotne prilike, zbog srazmerno niske geografske širine i prilično velike visine, ali su oni duboko u unutrašnjosti i izloženi su uticajima severa, što je još važnije. Čak i južniji delovi Makedonije, u suprotnosti s jugozapadnim krajem države, imaju veliko godišnje kolebanje temperature, osobito u dolinama Vardara, Bregalnice i Strumice (primer: Skopje, Demir Kapija).

Velike nizije, Podravina, Posavina i Vojvodina imaju najveću jednolikost u toplotnim uslovima. To im je glavna odlika prema planinskim krajevima. Velika kolebanja temperature od 22° do 24° (slika 11) mogu se objasniti njihovom izloženošću vetrovima sa severnog kvadranta, koji su zimi najhladniji, i sastavom tamošnjeg zemljišta, koje se leti izvanredno užari i prenosi svoju toplotu u prizemne vazdušne slojeve (primer: Virovitica, Bos. Gradiška, Osijek, Bač. Vinogradi).

Kolebanje temperature

Periodske promene \mathfrak{u} toplotnim uslovima pojedinih mesta i krajeva u Jugoslaviji izražene su najiednostavnije godišnjim kolebanjem vazdušne temperature. Ovi uslovi su pregledno izneseni u sl. 11, gde su mesta istih godišnjih kolebanja temperature povezana linijama, t. zv. izotalantozama. Iz njih se vide mnoge, ranije spomenute činjenice. Osobito upada u oči kako su izotalantoze mnogo blize jedna drugoj oko jadranskih obala, nego u unutrašnjosti zemlje. Velika zbijenost tih linija ujedno označuje naglo smanjivanje morskih uticaja od spoljasnjih ostrva prema obalama 1 prema unutrašnjosti. Godišnje kolebanje temperature poveca se do 20° na srazmerno neznatnom otstojanju od obale, od 15 do 70 kilometara. Toliko naglo iščezavanje uticaja Jadrana prouzrokovano je Dinarskim planinama, koje se dižu neposredno uz obale, mestimično do 1700 m , kao što je na Velebitu i Biokovu.

Ostrva daleko na pučini odlikuju se najmanjim godišnjim kolebanjem temperature, i to tim više, što su udaljenija od obale. Kolebanje na Palagruži nije veće od $14,0^{\circ}$, a na Visu, Hvaru, Mulatu, Lošinju i Poreru menja se od $14,4^{0}$ do $16,2^{0}$. Najveća kolebanja, naprotiv, nastaju daleko na istoku: u Banatu oko sliva Tamišł, u Krajini Istočne Stbije, i Krajištu oko Bosiljgrada, na gornjem Vardaru između Skopja i Tetova, i u z̈upi Strumice, s vrednostima od $23,0^{\circ}$ do $23,9^{\circ}$.

Slika 11 odista pokazuje da se izotzlantoze uglavnom povećavaju od zapada ka istoku. Ali, dok se u našoj zemlji jasno ističu maritimnost i kontinentalnost pojedinih krajeva, dakle uplivisanje geografskih dužina, dotle su uticaji sirina dosta nejasni. Ti uticaji, uistini, postoje otprilike do meridijana od 20° ist. duž., jer se zapadno od njega izolalantoze uglavnom povećavaju od juga prema severu. Gogišnja kolebanja temperature su istočnije od $20^{\circ} \mathrm{E}$ obično veća od $21,0^{\circ}$, bez neke vidljivije zavisnosti od geografske širine, tj_{j} bez pravilnosti u niihovim promenama. Uzrok tome su, verovatno, zimska strujanja vazduha (sl. 5). Strujanja su severnije od Dunava upravljena prema severozapadu i severu, dakle prema višim širinama, i pokazuju težnju za povećanjem temperature. Južnije od Zapadne Morave i

Nišave, vazdušne mase struje prema juz̆nom kvadrantu, s težnjom da snižavaju temperaturu. Ta suprotna strujanja imaju za posledicu prilično izjednačenje zimske temperature između severnih i južnih krajeva u pomenutom delu naše zemlje, pa i za prilično izjednačenje godišnjih kolebanja temperature. Izuzetak čini oblast oko Ohridskog i Prespanskog Jezera. Tu je godišnje kolebanje temperature manje od $20,0^{\circ}$, jer ove velike vodene površine deluju na isti način kao more.

S1. 11. Karta izotalantoza a Jugoslaviji
Mean annual range of temperature in Yugoslavia
Na sl. 11 prikazana su periodska godišnja kolebanja temperature, izvedena po 30 -ogodišnjim srednjim vrednostima najtoplijeg i najhladnijeg meseca. Stvarno, međutim, srednja najniža i najviša temperatura u pojedinim godinama pada u razne mesece, prva između novembra i marta, druga između juna i avgusta. Zato je neperiodsko kolebanje temperature dosta veće, prosečno za $1,3^{0}$ od periodskog kolebanja. Na osnovu posmatranja od 60 do 100 godina, prosečne razlike a pojedinim mestima su ovolike: Hvar $1,0^{0}$, Sarajevo $1,2^{0}$, Ljubljana $1,3^{0}$, Zagreb $1,5^{0}$, Beograd $1,6^{0}$.

Inverzije

U većem broju polja, kotlina i dubokih dolina, zimi se javljaju preokteti temperature, ili inverzije, koji su ponekad veoma izraziti. Poučan primer daje Ličko Polje, ograničeno na zapadu, prema Jadranu, vencem

Velebita s vrhovima od 1200 do 1600 m . Tu, na zapadnom obodu polja, na presedlini Velebita, selo Oštarije (924 m) ima u nekim zimskim danima prosečno za $8,5^{\circ}$ višu temperaturu od Gospića (565 m), a razlika je u jednom danu bila $17,3^{0}$. U Sarajevskom Polju su in-

400
S1. 12. Vertikalua raspodela januarske temperature od llidže do Bjelašnice
The vertical distribution of january Bjelas̃nica verzije između Ilidže i Sarajeva izražena íu normalnim temperaturama zimskih meseca:

	XIl	I	II
Sarajevo $(637 \mathrm{~m})$	$1,9^{0}$	$-1,5^{0}$	$0,2^{0}$
Ilidža $(497 \mathrm{~m})$	0,7	$-2,7$	$-0,9$
Gradijent	$-0,86$	$-0,86$	$-0,79$

Jasnije se pojava inverzije vidi iz dijagrama za mesec januar (sl. 12). Po njemu izlazi da je inverzija razvijena do visine od 680 metara, dakle u vazdušnom sloju od 180 m debljine. Sličnih preokreta temperature ima i na južnom obodu Panonske nizije. Tako, između Meteorološke opservatorije 4 Beogradu (132 m), koja se nalazi na visokom povijarcu, i Pančeva (76 m) , u dolini Tamiša, postoji inverzija u 20 -ogodišnjim srednjim temperaturama od novembra do marta. To pokazuje sledeća tablica:

 | Pančevo $\left(\begin{array}{lllll}76\end{array} \mathrm{~m}\right)$ | 5,9 | 1,4 | $-1,8$ | 0,1 | 6,5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Gradijent $-0,33-0,70-1,20$

Preokret temperature je tim izrazitiji, što Preokret tei
Inverzije se stvaraju i u slobodnoj atmosferi. Tako je, naprimer, inverzija nastala nad Vršcem 26 decembra 1939. Temperatura prizemnog vazdušnog sloja (92 m) bila je $5,4^{0}$; na visini od 270 m povećala se do $7,0^{0}$, pa se naviše smanjivala: na visini od 660 m iznosila je $5,4^{0}$, kolika je bila u prizemnom sloju, na visini od $1960 \mathrm{~m}-5,6^{\circ}$.

Preokreti temperature se naročito razvijaju u dubokim kotlinama, poljima i zatvorenim dolinama, koje su zaklonjene od vetrova i iz kojih hladan vazduh ne može odilaziti nego se u njima zadržava. Inverzije su osobito pojačane kad je cela planina pod snegom, a iznad cele oblasti razvijen visok vazdušni pritisak. U svima ovim oblicima zemljišta javlja se, do neke visine, preokret temperature, ali je njegova granica različita u raznim dolinama, kotlinama i poljima.

Pojave inverzija temperature značajne su za život na planimama. Usled čestih preokreta temperature, sela u nekim planinama leže na dolinskim stranama, ili na plavinama, terasama, bregovima. Tu je vazduh suvlji, nema mnogo magle, noćne temperature su umerenije, mraz je ređi, nego u prostranim dolinama ili kotlinama, a sve su to posledice inverzija. Njihov se uticaj ogleda i na vegetaciji. U Istri, na primer, zimi je vazdusna temperatura u Pazinu (275 m) u nekim časovima bila, prosečno, za $2,5^{\circ}$ niza nego na Učki (950 m). Uzrok tome je što Pazin leži u kotlinastoj doliní, koja je gotovo uvek pod maglom u tihim nocíma, usled jakog izračivanja Zato smokovo i maslinovo drvo ne uspeva u Pazinu, dok sazreva u okol-
nim krajevima na 100 do 200 m većoj visini. U mnogim dubokim vrtačama našega krša koje su na većoj visini, biljni pojasevi se obrnu. Po njihovom dnu, s najnižom temperaturom, mestimično se javljaju biljke koje normalno uspevaju na znatno vecoj visini, i obrnuto. Uzroci tome su, pored preokreta temperarure, slabije i kraće osunčavanje, zadržavanje hladnog i teškog vazduha, duže trajanje snežnog pokrivača.

Mraz

Mrazevi su takođe zimske pojave. Oni su važni za poljoprivredu, pa će se dati nekoliko podataka o njihovom trajanju, tj. navešće se u kolikim razdobljima nastaju temperature ispod tačke mržnjenja ($0^{\circ} \mathrm{C}$) u nekim našim krajevima. Srednji datum prvog i poslednjeg mraza, sa odgovarajucim brojem dana, i stvarnog broja mraznih dana, iznesen je u tab. 4 (str. 22).

Radi objašnjenja ove tablice treba reći da mraza nema svakog dana zmedu dva srednja datuma, te je stvarni broj dana s mrazom, u mraznom periodu svakog mesta, otprilike dvaput manji (51%) od odgovarajućeg roja dana izmedu srednjeg datuma prvog i poslednjeg mraza. Ali je ova srazmera znatno manja u primorskim krajevima (20% na južnom, 28% na severnom primorju, 24% u Hercegovini, 39% ut Zeti), nego u unutrašnjosti (47 do 65%), a najveća je na planinama (73 do 79%). Pored toga, prvi mraz se \mathfrak{u} nekoj godini javi mnogo ranije ili docnije od srednjeg datuma, a isto je i kod poslednjeg mraza. Prvi mraz se pojavi, u srednju ruku oko 30 dana pre srednjeg datuma, s kolebanjem od 15 do 40 dana, poslednji mraz oko 30 dana iza srednjeg datuma, s kolebanjem od 17 do 42 dana

Stvarni broj dana s mrazom povećava se, uglavnom, od nižih prema višim širinama, od mora prema unutrašnjosti zemlje i od nižih prema višim mestima. To se donekle vidi i iz tab. 4

Ekstremne temperature i kolebanje

Apsolutni ekstremi temperature postaju sve izrazitiji idući od zapada na istoku i od juga prema severu, ako su svi drugi uslovi isti. Uzimaući sve ovo \mathfrak{u} obzir, apsolutni minimum temperature u Jugoslaviji menja se od $-19,5^{\circ}$ do -30°, sa izuzetkom primorskih krajeva 1 ostrva; $1 z u^{2}$ zetno niske vrednosti pokazuju Babno Polje (756 m) $-32,8^{\circ}$, Trebnje (278 m) $-33,6^{\circ}$, Čakovec (170 m) - $35,5^{\circ}$, Ravna Gora (793 m) - $-32,0$, Han Semeč $(1180 \mathrm{~m})-34,3^{0}$, Kolašin (972 m) - 32, 0°, Kovačica (81 m) $-32,5^{0}$ Smederevo (80 m) --31, 1°. Apsolutni maksimum temperature poka zuje vrednosti od 31° do 40°. Više temperature imali su nizije na severoistokı, naročito Vojvodina, neki krajevi Srbije, Kosovo-Metohija sa oko inom, Makedonija i neka mesta na jugozapadu: Moja Volja (120 m ; zap.
 od Inđije) $42,2^{\circ}$, Beograd (132 m) $41,8^{0}$, Jaša Tomić (82 m) $44,0^{\circ}$, Valjevo $(185 \mathrm{~m}) 42,5^{\circ}$, Rankovićevo (210 m) $44,3^{0}$, Kruševac (154 m) $43,0^{0}$, Niš (198 m) $42,8^{0}$, Demir Kapija (120 m) 42, 80, Mostar (70 m) 42, 2^{0}.

Apsolutno godišnje kolebanje temperature uglavnom se povećava od obale prema unutrašnjosti, ali u dubokim kotlinama; poljima i dolinama dobija velike vrednosti i il srazmernoj blizini mora, napr. Gospić (565 m) 68,60. Apsolutno kolebanje povećava se i s povećanom širinom, što se osobito vidi na primorju, gde nema velikih razlika u visini mesta: na osobito vidi na primorju, gde nema Rijeka $51,2^{0}$, Senj $55,9^{0}$, na jugu Gruž $44,4^{0}$, Ulcinj $45,9^{\circ}$. Apso-
lutno kolebanje temperature smanjeno je na planinama, prema nižim mestima, kao što je i kod normalnih godišnjih tokova temperature. Za to, kao i za mesta u unutrašnjosti, izneće se nekoliko karakterističnih primera s neznatnim i velikim apsolutnim kolebanjima: Ljubljana (306 m) $63,6^{\circ}$, Ribnica (715 m , Pohorje) $69,8^{0}$. Sv. Jernej nad Muto (1041 m) $52,4^{0}$, Grm pri Novem Mestu $(196 \mathrm{~m}) 68,1^{\circ}$, Ċakovec $74,3^{0}$, Zagreb (163 m) $59,4^{0}$, Sljeme (935 m)

Tab. 4. Srednji datum prvog i poslednjeg mraza s odgovarajućim i stvarnim brojem dana s mrazom
The average date of the first and last frost with corresponding and actual number of days with frost

Predeo Region	Sr. visina Mean altit.	Prvi mraz First frost	Posl. mraz Last frost	Broj dana s mrazom Number of frost days	
				odgovarajući corresponding	stvarni actual
Soča i Vipava Soča and Vipava	693 m	7 XI	4 IV	148	90
Slovenifa Slovenia	363	27 X	5 IV	160	76
Severno Primorje North sea coast	32	6 XII	12 II	68	17
Severno Primorje, UČka North sea coast, Ư̌ka	950	7 XI	8 IV	152	68
Južno Primorje South sea coast	20	61	28 II	54	11
Hrvatska, JZ deo Croatia, SW part	679	28 IX	3 V	187	123
Hrvatska, ostall deo Croatia, the rest	141	27 X	6 IV	162	90
Bosna Bosnia	342	4 XI	31 III	147	76
Bosna, Bjelašnica Bosnia, Bjelašnica	2067	9 IX	17 VI	281	205
Hercegovina Hercegovina	81	27 XI	23 II	88	22
Crna Gora, plan. kraj Montenegro. Mountain region	740	12 X	18 IV	188	109
Crna Gora, Zeta Montenegro, Zeta	48	30 XI	5 III	96	37
Vojvodina Vojvodina	86	28 X	7 IV	161	81
Srbija Serbia	205	25 X	9 IV	166	91
Kosovo-Metohija Kosovo-Metohija	517	27 X	7 IV	162	88
Makedonija, zapadni deo Macedonia, Western part	531	6 XI	1 V	146	84
Makedonija, Perister Macedonia, Perister	1220	31 X	27 IV	179	142
Makedonija, istočn deo Macedonia, Eastern part	292	20 XI	24 III	124	68

$50,4^{0}$, Lipik (154 m) 68,20, Sarajevo (637 m) 66, 4^{0}, Bjelašnica (2067 m) $58,9^{0}$, Bijeljina (94 m) $72,0^{\circ}$, Mostar (59 m) $55,2^{0}$, Pljevlja (768 m) $69,1{ }^{\circ}$, Nikšić (620 m) $58,6^{\circ}$, Brestovac (92 m) 66.5^{0}, Jaša Tomić $73,0^{\circ}$, Beograd $70,0^{0}$ Kragujevac (195 m) 72,40 , Vranje (480 m) 60,6${ }^{\circ}$, Novi Pazar 71, 0°, Peć (525 m) $60,5^{\circ}$, Skopje (240 m) $67,0^{\circ}$, Struga (697 m) $54,0^{\circ}$, Bitola $68,5^{\circ}$, Demir Kapija $63,2^{\circ}$, Solun (46 m) $54,6^{\circ}$. Neznatno apsolutno kolebanje tem. perature u Struzi i Solunu pokazuje veliki uticaj Ohridskog Jezera, odnEgejskog Mora.

Relativna vlažnost

Vlažnost vazduha je važna ne samo za poljoprivredu, već i za ceo život. Vodenu paru dobiva vazduh isparavanjem vode bilo iz mora ili s kopnenih voda, kao i s vlažnog zemljišta. Stoga u vazduhu ima stalno

Tab. 5. Godišnji tok relativne vlažnosti u procentima
Annual variation of relative humidity in percentages

Predeo Region	1			IV				VII		111	IX			XI X	XII	$\begin{aligned} & \text { God. } \\ & \text { Year } \end{aligned}$	Koleb. Range
Primorjé. Kvarner (23 m) Seacoast, Quarner (23 m.)	74	73	73	74	73		71	67		66	72	76	76	$76 \mid 7$	77	73	11
, Trst, Rijeka (15 m) Trieste, Rijeka (15 m)	70	68	67	66	67		67	62		64	68		74	72	71	68	12
" \quad srednji deo (15 m) middle part (15 m)	66	65	65	65	64		63	60		59	63		67	68	69	64	10
, Goli Vrh (1319 m.) Goli Vrli (1319 m.)	88	86	87	81	78		73	71		69	76		77	83	86	80	19
Slovenija (363 m) Slovenia (363 m)	91	87	84	80	79	9	78	77		80	83		87	90	92	84	15
	87	82	80	77	77	7	75	73		76	80		84	88	89	81	16
Hrvatska (202 m) Croatia (202 m)																	
Bosna $(342 \mathrm{~m})$ Bosnia $(342 \mathrm{~m})$	82	79	76	76		7	76	75		76	80		84	84	85	79	10
$\Longrightarrow \quad \text { Bjelašnica }(2067 \mathrm{~m})$	84	86	88	89		88	87	84		79	83		87	87	87	86	10
Hercegovina (81 m) Hercegovina (81 m)	65	61	63	64		62	59	5		53	61		68	70	70	62	17
Crna Gora plan. kraj (740 m) Montenegro Mountain region (740 m)	86	83	79	73		72	71	6	66	67	73		80	85	88	77	22
Crna Gora, Zeta (31 m) Montenegro, Zeta (31 m)	79	75	71	72		73	67		60	58	67		78	79	81	72	23
Vojvodina (95 m) Vojrodina (95 m)	87	83	77	71		71	70	6	66	69	72		80	85	88	77	22
Srbia (211 m) Serbia (211 m)	85	580	73	70		71	68		65	68	71		79	84	86	- 75	21
Kosovo-Metohija (547 m) Ko ovo- Metohija (547 m)	84	477	77	67		68	65		61	63	67		76	81	86	6-72	25
$\begin{aligned} & \text { Makedonija }(392 \mathrm{~m}) \\ & \text { Macedonia }(392 \mathrm{~m}) \end{aligned}$	83			267		65	62		56	58	63		72	80	85	570	29
$\quad \text { Struga }(697 \mathrm{~m})$			774	47		70	69	69	65	66	7		75	. 78		$2 \quad 73$	- 17
Grčka, Solun (38 m)		570	068	86	7	65		59	54	56			71	14	477	7	23

vodene pare, ali se njena sadržina menja uporedo s promenama temperature: şto je ova viša, tim veći je parni pritisak, i obrnuto. U obrnutoj srazmeri se menja relativna vlažnost vazduha; ona se smanjuje, s povećanjem vazdušne temperature, i obrnuto. Relativna vlažnost označava stepen zasićenosti vazduha vodenom parom: što je procent veći, tim više je vazduh zasićen vodenom parom. Relativna vlažnost u Jugoslaviji obično je najveća u decembru, najmanja \mathfrak{u} avgustu ili julu, šio pokazuje tab. 5 (str. 23 .

Iz tablice se mogu izvući ovi zakijučci: Godišnja vrednost relativne vlažnosti smanjuje se od zapada prema istoku i od severa prema jugu, a amplituda godišnjeg kolebanja se povećava u istim pravcima. Primorje pokazuje izuzetak, jer su na njemu, kao celini, godišnje vrednostı relativne vlažnosti vazduha manje, nego u ostalim krajevima države. Ipak, Kvarner ima dosta veliku relativnu vlažnost, a još veća je na Palagruži (76%, daleko na pučini. Srednje Primorje, međutim, ima prilično manju vlažnost, kao i mesta pri obali Trsčanskog i Riječkog Zaliva. Trst i Rijeka zahvaljuju smanjenu relativiu vlažnost, prema Kvarneru, uticaju bure, suvog slapovitog vetra. Struga pokazuje znatan uticaj Ohridskog Jezera i u godišnjem toku relativne vlažnosti. Ona ima, od marta do oktobra, za 4 do 12% veću vlažnost od Prilepa i Bitolja. Najzad, planinski vrhovi znatno su vlažniji od okolnih niskih mesta, prosečno za 12%.

Oblačnost

Oblačnost je u vezi s promenama temperature, odnosno u zavisnosti od njih. Klimatski je važna iz razloga što upliviše na Sunčevo zračenje i na izračivanje, dakle na bilans toplote. Velika oblačnost smanjuje Sunčevo zračenje u znatnoj meri, a isto tako i izračivanje. Mutni dani se stoga odlikuju neznatnim dnevnim kolebanjima temperature. Zimi ublažuju hladnoću, leti, toplotu. Blage zime s vlažnim, oblačnim vremenom posledica su čestih prolaza okeanskih vazdušnih masa, pri kojima se obrazuju gusti oblaci i magle. Ostre zime, koje su rede, uvek su \mathfrak{u} vezi s dugotrajnim visokim pritiskom iznad neke oblasti, pri kome vladaju silazna vazdušna kretanja s vedrim vremenom i nesprečenim izračivanjem. Godišnji tok oblačnosti u raznim krajevima države iznesen je u tab. 6 (str. 25).

Prosečna godišnja oblačnost se, uglavnom, smanjuje od zapada prema istoku, a u većoj meri od severa ka jugu, dok se godišnje kolebanje ovog elementa povećava u istim pravcima. Izuzetak čini opet primorje, jer ima manju godišnju oblačnost i manje kolebanje od krajeva u unutrašnjosti otprilike na ist j geografskoj širini. Oblačnost se povećava is sisinom, ali se godišnje kolebanje povećava u istom pravcu u primorskim planinskim krajevima, dok se smanjuje u kontinentalnim planinskim krajevima. To je u vezi s godišnjim kolebanjima temperature utim planinskim predelima. U godišnjem toku je, većinom, najoblačniji mesec decembar, najvedriji avgust ili jul, ali se na zapadu, od Slovenije do Crne Gore, sporedni maksimum oblačnosti pojavi u poznom proleću, aprilu ili maju. April je najoblačniji mesec na Bjelašnici, a u dolini Soče nastaju dva podjednaka maksima oblačnosti u oktobru i aprilu, dok su avgust i januar najvedriji, opet s podjednakom vrednošću. Cestina barometarskih depresija, koje se kreću ranije pomenutim putanjama, isto je tako uticajna na godišnje tokove oblačnosti u Jugoslaviji, kao i na raspodelu kiše po mesecima.

Tab. 6. Godišnii tok oblačnosti u procentima Annual variation of cloudiness in percentages

$\begin{gathered} \text { Predeo } \\ \text { Reg on } \end{gathered}$	1			IV		1	Vil	IVII						God Year	Ra
Primorje, severno (52 m) Seacoast, Northern	54	52	55	56	52	49	37	34	42	56	56	56	59	51	
$1030 \mathrm{~m}$	49	46	47	47	41	31	18	19	30	46	6	50	54	40	36
$308 \mathrm{~m})$	66	64	57	54	50	49	32	26	41	56		61	68	52	42
Slo	46	48	55	59	58	57	46	45	46	61	1	53	51	52	16
	66	59	56	57	56	55	47	44	51	62		69	70	57	26
Hrvatska, zapadni deo (299 m) Croatia, Western part	68	61	58	58	52	48	38	36	45	59	9	69	72	55	36
", \quad Eastočni deo (113 m)	70	62	58	57	50	48	38	35	42	55	5	66	73	54	38
Bosna zap. i Hercegovina (394 m)	50	49	52	53	48	42	28	26	36	49	9	52	56	45	30
st (458 m)	67	62	59	61	57	753	39	37	46	655	5	65	72	56	35
, Bjelà̈nica	70	71	73	74	74	466	52	50	56	66	6	71	73	66	24
Crna Gora, Si deo (893 m) Montenegro, NE part	71	68	66	61	56	52	43	40	49	460	6	68	76	59	36
$\Longrightarrow \quad \begin{aligned} & \mathrm{SW} \underset{\text { part }}{\text { deo }}(444 \mathrm{~m}) \\ & , \end{aligned}$	59	58	58	58	55	54	28	26	39	59	4	61	67	51	
Vojvodina $(89 \mathrm{~m})$ Vojvodina	71	64	61	60	54	451	40	37	43	352	2	66	73	56	37
Srbija, severni deo (162 m) Serbia, Northern part	71	66	63	60	56	65	40	36	43	3.53	5	66	74	57	38
$\begin{aligned} & \text { Južui deo }(370 \mathrm{~m}) \\ & \text { Southern part } \end{aligned}$	67	62	60	57		5 48	35	32	39	950	50	62	74	53	42
Kosovo-Metohija (554 m) Kosovo-Meiohila	68	63	60	58	56	6.46	634	429	38	851	51	60	70	53	
$\begin{aligned} & \text { Makedonija } \\ & \text { Macedonla } \end{aligned}(400 \mathrm{~m})$	64	60	57	53	51	41	129	24	32	250	5	57	6	49	43
Grčka, Soluaะ (38 m) Greece Thessaloniki	54	52	55	50	44	431	119		29	94	4	57	61	43	43

Trajanje osunčzvanja

Trajanje osunčavanja menja se u obrnutoj srazmeri s oblačnošćui. Ali se geografska raspodela godišnjeg trajanja osunčavanja ne slaže s raspodelom oblačnosti. Ova je manje zavisna od reljefa zemljišta, nego trajanje osunčavanja. To vredi i za pojedina godišnja doba, osobito za zimu. Osunčavanje se čečće izražava onolikim brojem časova koliko je Sunce sijalo u određenom razdoblju, napr. u mesecu. Medutim, pravilnije je da se obeleži brojem časova u prosečnom danu istog razdoblja, jer je time otklonjena nejednakost u trajanju pojedinih meseca.

Planinski krajevi su, iz ranije pomenutih razloga, najmanje osunčavani, osobito u dubokim dolinama, klisurama i uskim kotlinama. Tako, u periodu 1926/35 Ljubljana ima godišnje 1804 časa osunčavanja (4,9 časova dnevno) Rogaška Slatina 1826 časova (5,0), Zagreb 2057 časova (5,6), Sarajevo 1600 časova (4,4), Tit. Užice 1723 časa (4,7), Niš 1943 časa (5,3), Prizren 1896 časova (5,2). Duže je osunčavanje u ravnijim krajevima, severno od Save i Dunava, od 1886 časova (5,3) u Brestovcu (Belje) preko $1: 91$ časa $(5,5)$ u Petrovaradinu, do 2222 časa $(6,1)$ u Vršcu. Znatno su povoljniji uslovi u oblasti srazmerno neznatne oblačnosti. Time se odlikuju južni deo Makedonije, gde Štip ima 2387 časova osunčavanja $(6,5)$ i Prilep 2531 časa $(6,9)$ a naročito Jadransko Primorje. Srednje Primorje je najsunčanije: Hvar 2747 časova (7,5), Dubrovnik 2712 časova (7,4), Split 2642 časa (7,2); nešto manje je osunčavano Južno Primorje: Kumbor i Ulcinj po 2530 časova $(6,9)$, a još manje Severno Primorje: Mali Lošinj 2448 časova (6,7), Senj 2230 časova (6,1). Vrlo je značajno da osunčavanje na Cetinju traje 2417 časova $(6,6)$, mada je tu godišnja visina padavina, u istom periodu, čak 3920 mm .

S1. 13. Karta godiśnje raspodele padavina u Jugoslaviji (po H. Renieru i E. Bilu) The chart of the mean annual precipitation in Yugoslavia (H. Renier and E. Biel)

Naravno, sunce sija leti mnogo duže u svim krajevima, nego zimi Jul ili avgust imaju, prosečno, za 4 do 5 puta duže osunčavanje od decembra. Naročito je mala srazmera između meseca s najdužim i najkraćim
osunčavanjem kod primorskih mesta, 3,4 do 4,0 , a mnogo veća je u kontinentalnijim mestima: Maribor 5,4 , Zagreb i Beograd 6,1, Sarajevo 7,9, Skopje 11,1.

Raspodela padavina

Podneblje Jugoslavije okarakterisano je mnogo više oblačnošću i padavinama, nego toplotnim prilikama. Biljni život naročito zavisi od obilnosti i raspodele padavina po mesecima, t. zv. pluviometriskog režima, i zato treba posvetiti osobitu pažnju ovom klimatskom elementu. Cela naša zemlja ima padavine u svim godišnjim dobima, ali one nisu ravnomerno raspodeljene, kao što će se docnije videti.

Regionalna raspodela godišnjih visina padavina veoma je nepravilna usled složenog reljefa zemljišta, koji znatno remeti normalne uslove (slika 13). Ako se ne uzmu u obzir planine i veliki masivi u unutrašnjosti, prosečna visina padavina se, uglavnom, povećava od ostrva prema primorskim visoravnima i planinama (primer: Palagruža, Dubrovnik, Gacko), pa se odatle postepeno smanjuje prema istoku. To se zbiva postepenije severno od 430 šir., nego južnije. Jedan od najkišovitijih krajeva u Evropi su Krivošije, planinski predeo severno od Kotorskog Zaliva. Tu, i u crnogorskim planinama, padne 490 do 250 cm kiše godišnje. Druga veoma kišovita oblast nastaje od Velebita preko Gorskog Kotora i Učke do Snežnika, zatim od Crnog Vrha do Triglava, gde je godišnja visina padavina 200 do 330 cm . Na ostrvima ima, prosečno, 50 do 120 cm kiše godišnje, a nešto više pri obali. Mnogo je manje padavina na istoku. U Banatu padne mestimično manje od 60 cm kiše (Kikinda 54 cm), a još manje u nekim delovima Makedonije (Skopje 48 cm , Gradsko 45 cm godišnje).

Pluviometriski režimi

Godišnji period padavina za pedesetak mesta u Jugoslaviji prikazan je u tabl. 7. Tu su unesena mesta sa, po mogućnosti, što dužim posmatranjima ($n=$ broj godina) i sa različitom raspodelom padavina po mesecima. Relativno godišnje kolebanje padavina izraženo je u procentima godišnje visine, prema sledećoj formuli $\frac{R_{x}-R_{n}}{R} 100$, u kojoj je R_{x} najvlažniji mesec, R_{n} najsuvlji mesec, R godišnja visina padavina u određenom mestu. Glavni tipovi pluviometriskog režima (R) prikazani su na slici 14, s odgovarajucim brojem padavinskih dana (n) i intenzitetom padavina (I). Uzroci različite raspodele padavina navedeni su ranije. Ovde će se spomenuti samo osnovne karakteristike.

U Jugoslaviji se razlikuju dva osnovna pluviometriska režima: maritimni, odn. mediteranski, i kontinentalni, "koji se dele u više podvrsta. Ovima su istaknuta delimična preinačenja kod oba osnovna režima. Granica izmedju njih pruža se, otprilike, od planine Ivanšćice na jugoistok preko Kozare i Ljubišnje do Prokletija, a odatle uglavnom na istok.

Opšta odlika sredozemnog režima jeste velika čestina i količina padavina u zimskoj polovini godine, naročito u poznoj jeseni, sporedni maksimum u martu ili aprilu, i suvo leto, s najmanje kise u najtoplijem mesecu. Kontinentalni režim je, naprotiv, uopšte obeležen čestim i obilnijim kišama u letnjoj polovini godine, naročito u maju i junu, sporednim maksimumom u oktobru, i prilično suvom zimom,'s najmanje padavina u februaru.

Tab. 7. Godišnji period padavina a milimetrima Annual variation of precipitation, in millimetres

Mesto \mathfrak{i} visina Place and altiture		I 1	II				$\mathrm{VI} \mathrm{~V}$		VIII	IX	X	XI	XII	¢¢	$\begin{gathered} \text { rel. } \\ \text { koleb. } \\ \text { Rel. } \end{gathered}$
Celovec 440 m	56	37	39			941	1181	1101	128	1081	109	79	57	1013	9,0\%
Obir ${ }^{\text {+1 }}$) 2047	56	76	58	94	1281	1461	17015	151	154	122	140	101	68	1408	8,0
Maribor 270	36	47	45	61	93	981	12510	1061	112	1091	106	74	66	1042	7,6
Dobrna* 353	76	55	46	68	891	1161	13712	1281	121	1251	127	96	77	1185	7,7
Boveci 450	48			2302	2142	2142	2591	17611	197	204	3583	315	236	2625	11,0
Gorica 86	56	75	731	1181	1191	1391	1621	11411	130	168	1791	157	115	1549	6,8
Ljubljana 306	100	79	70	951	1071	1171	13712	1261	135	144	1631	136	105	1415	6,6
Novo Mesto 198	61	61	54	80	8811	1151	1251	1121	117	1231	138	98	87	1198	7,0
Rijeka 4	48	100	961	1271	1211	118	128	761	106	172	2271	174	150	1595	8,3
Učka* 950	48			3362	2562	2492	24216	167 !	194	209	356	370	378	3285	6,4
Pula ${ }^{\text {\% }} 82$	48	54	51		71	59	69	59	65	92	125	98	94	901	8,2
Senj 7	62	80	72		10410	103	99	67	84	140	198	172	139	1353	9,6
Mali Losinj ${ }^{\text {\% }} 10$	48	75	81	75	80	67	61	44	49	112	137	148	131	1060	9,8
Hvar 19	60	78	64	72	60	40	38	21	39	63	981	111	105	789	11,4
Palagruža* 92	60	36	26	38	32	29	19	10	20	30	50	53	51	394	10,9
Dubrovnik-Gruž 18	43				$12+$	78	48	33	47		168	189	187	1361	11,4
Kotor 3	39				1741	128	95	42	52	116	226	239	239	1858	10,6
Crkvice 1097	44	504	4685	535	43612	2691	1156	73	77	2576	617	814	728	4934	15,0
Skadar 22	32	1311	1291	1711	131	90	53	47	29	1012	207	209	173	1471	12,2
Gospić 565	32	145	1391	1541	1561	118	112	93	93	152	2512	211	186	1810	8,7
Livno 729	31	86		1101	110	93	91	68	71	130	160	145	114	1263	7,3
Mostar 59	52	105			126	97	72	45	55		164	1142	141	1255	9,3
Gacko-Avtovac 970	36	1401	1191	1571	1451	120	91	60	58	122	234	205	164	1615	10,9
Cakovec 170	45	48	42	60	83	94	9910	103	96	84	100	- 69	64	947	6,4
Zagreb 163	90	49	47	56	68	83	958	81	80	821	100	84	63	888	5,7
Sunja 100	28	56	51	62	64	991	108	87	77	89	89	76	67	925	6,2
Bihać 227	37	76	86		1231	1321	124	92	105	1281	148	137	113	1354	5,3
Banja Luka 163	31	65	57	72	1011	1191	119	86	83		117	86	79	1070	5,8
Travnik 504	44	61	54	63	71	79	77	67	62	76	95	80	67	852	4,8
Sarajevo 610	70	63	56	70	73.	80	92	63	65		100	87	74	899	4,9
Bjelašnica 2067.	46	1721	1641	188	1851	16915	1541	1081	105	134	191	170	180	1921	4,4
Pljevlja 768	35	50	47	56			91	66	58			-67		773	5,7
Bjelovar 135	31	48	48	60	79	921	101	88	85	80	93	71	70	916	5,8
Požega 155	58	43	37	50	66	80	87	68	72	69	76	66	58	772	6,4
Osijek 94	57	42	35	51	69	79	84	60	61	57	71	56	46	711	6,7
Baja 111	46	35	28	41	56	67	74	50	56	50	58	46	42	614	7,5
Bač. Vinogradi 100	40	32	28	37	55	76	80	61	55	53	59	41	37	614	8,5
Meda 84	35	33	30	44	58	77	79	57	54	48	58	45	40	623	7,9
Novi Sad 80	60	37	32	47	59	74	79	56	52	57.	66	- 49	44	652	7,2
Vršac ${ }^{\text {c }} 9$	40	40	30	37	51	75	83	62	51	53	62	. 46	49	639	8,3
Beograd 132	65	39	35	43	58	74	79	64	53	46	61	55	48	655	6,1
Valjevo* 176	40	46	39	50	68	91	94	78	61	55	77	. 67	52	778	7,1
Tuzla 236	44	56	48	65	83	991	113	90	82	79	88	66	64	934	7.0
Tit Užice* 432	40	46	42	49	65	85	96	80	56	53	77	73	58	780	6,9
Kragujevac 175	40	39	31	45	59	77	80	60	42	38	60	49	47	627	7,8
Bukovo 133	40	41	32	38	55	65	67	45	39	35	60	57	55	589	5,9
Nis* 195	40	29	28	32	52	59	62	42	35	33	67	46	45	530	7,
K. Mitrovica* 521	40	35	33	37	49	64	69	52	36	37	76	55	52	595	7,2
Vranje 480	40	34	29	38	51	64	68	39	32	36	71	52	45	559	7,5
Skopje 240	40	33	27	34	49	55	46	25	23	28	62	45	59	486	8,0
Bitula* 628	40	49	46	52	61	67	59	42	34	46	74	85	92	707	8,2
Solun 39	40	36	27	33	41	49	40	26	22	28	49	55	51	457	7,2

Sredozemni režim razvijen je najpravilnije na Južnom Primorju i na ostrvima Srednjeg Primorja. Najviše je kiše u novembru ili decembru, slab sporedni maksimum nastaje u mesecu martu, a jul je najsuvlji, (sl. 14,

[^0]Hvar). Prema severu se, međutim, dešava kod ovog režima postepena, ali pravilna modifikacija. To pokazuje tab. 8 , u kojoj su vrednosti pojedinih godišnjih doba, ne meteoroloških, izražene u procentima godišnje visine padavina.

Tab. 8. Modifikacija sredozemnog režima s geogr. širinom, $u \%$ godišnje visine padavina
Modification of the mediterranean regime of rainfall with latitude, in $\%$ of annual amount of precipitation

Mesto Flace	Geogr. sir. Latitude	I-III	IV-VI	VII-IX	X-XII
Maribor	$46^{\circ} 34^{\prime}$	15,1	28,9	32,0	24,0
Ljubljana	$46^{\circ} 03^{\prime}$	17,3	25,5	28,7	28,5
Rijeka	$45^{\circ} 19^{\prime}$	19,8	23,7	22,3	34,2
Split	$43^{\circ} 31^{\prime}$	23,5	21,2	18,5	36,8
Kotor	$42^{\circ} 26^{\prime}$	29,4	21,4	11,3	37,9

Procent jesenjih (X - XII) i zimskih padavina (I-III) pravilno se smanjuje od nižih prema višim širinama, dok se procent prolećnih (IV - VI) i letnjih kiša (VII -IX) u istom pravcu povećava, ali leti znatno više no u proleće. Zbog toga je razlika izmedu jesenjih i prolećnih padavina dosta smanjena na Severnom Primorju, i zimi ima manje padavina nego leti. Sem toga je na Severnom Primorju najkišoviti oktobar, jul ostaje i dalje najsuvlji mesec, dok se neizrazit sporedni maksimum kiše pojavi u aprilu (sl. 14, Pula). Dalje na severu prelazi se u kontinentalne uslove raspodele padavina po mesecima. Ljubljana, naprimer, još ima najviše padavina u oktobru, ali je sporedni maksimu premešten na jun, koji ima za 26 mm $\left(1,8^{\circ}\right.$ o od godišnje visine) manje padavina od oktobra, a februar je najsuvlji ($1,8 \%$ od godisnje visine) manje padavina mesec. Cist kontinentaini, srednjeevropsk ip ima planinak, dajso oktobra, s maksimumom u avgustu, a februar je i ovde najsuvlji (sl. 14, Maribor).

Ista modifikacija u sredozemnom režimu nastaje i od spoljašnjih ostrva prema jadranskoj obali. To se jasno ogleda u profilu Palagruža-Split. Palagruža ima ovolike relativne visine padavina

$$
\begin{array}{cccc}
\text { I-III } & \text { IV-VI } & \text { VII-IX } & \text { X-XII } \\
28,4 & 18,0 & 14,5 & 39,1
\end{array}
$$

Procent jesenjih i zimskih padavina se i na tom profilu pravilno smanjuje od pučine prema obali, dok se procent prolećnih i letnjih padavina povećava, gotovo u istoj srazmeri sa smanjivanjem.

Isto preinačenje postoji i kod kontinentalnog režima, kao što se vidi iz tab. 9. Kontinentalni režim je sasvim pravilno razvijen u severnom delu Slovenije, što je ranije prikazano. Odatle na jugotstok nastaje postepena modifikacija ovog tipa utoliko, što se procent letnjnih kiša (VII-IX) smanjuje, a prolećnih (IV-VI) povećava. Na velikom prostoru je najkišovitije pozno proleće, najčešće mesec jun, najsuvlji je februar, a sporedni maksimum padavina pojavi se u oktobru. Ovom, podunavskom tipu pluviometriskog režima pripadaju istočni deo Hrvatske, severoistočni deo Bosne, Vojvodina i Srbija otprilike do doline Porečke Reke na istoku, a planine Zlatara-

Golije-Jastrepca na jugu. Sliv Timoka razlikuje se od podunavskog tipa samo u tome, što najmanje kiše padne u jednom od pozno letnjih meseca.

Tab. 9. Modifikacija kontinentalnog režima sa geogr. širinom, $u \%$ godišnje visine padavina

Mesto Place	Geogr. šir. Latitude	[-111	IV-VI	VII-IX	X-XII
Maribor	$46^{\circ} 34^{\prime}$	15,1	28,9	32,0	24,0
Požega	$45^{0} 20^{\prime}$	16,8	30,2	27,1	25,9
Titovo Užice	$43^{05} 1^{\prime}$	19,0	32,1	24,5	24,7
Vranje	$42^{\circ} 33^{\prime}$	21,4	30,4	19,7	28,5
Bitola	$41^{00} 2^{\prime}$	22,3	26,9	16,9	34,2

Po podacima u tab. 9 izlazi da se procent jesenjih i zimskih padavina dosta pravilno povećava od viših prema nižim širinama, ali mnogo više kod jesenjih, nego kod zimskih padavina; procenat letnjih kíša, naprotiv, veoma jako se smanjuje u istom prmavcu. Procent prolećnih padavina pokazuje nepravilnost. On se, donekle, prema nižim širinama sporo povećava, a dalje se nešto brže smanjuje. Usled ovih promena dolazi se do takvih uslova da poznoprolećni i jesenji maksimum padavina dobiju u Nišu istu vrednost, a donekle to pokazuje i Vranje (sl. 14, Niš). Makedonija, najzad, dobiva nešto

S1. 14. Glavni tipovi pluviometriskog režima (R), broja padavinskih dana (n) 1 intenziteta padavina (l)
The main types of the anmual variation of precipitation (R), number of days with precipitition (n)
and intensity of precipitation (I)
modifikovan sredozemni režim, jer tu je najviše padavina u poznoj jeseni, najčešće u novembru, najmanje u julu ili avgustu, a sporedni maksimum ostaje u maju (sl. 14, Bitolj). Pored toga, padavine su u Makedoniji ravnomernije raspodeljene po mesecima, nego na Jadranskom Primorju, što se vidi iz relativnih kolebanja u tab. 7. U ovoj prostranoj oblasti, kao celini, sukobljavaju se i prepliću kontinentalno i mediteransko podneble, Ali, po nesreći, njihova naizmenična dejstva proizvedu dva najnepovoljnija godišnja doba: hladnu kontinentalnu sa vlažnom sredozemom zimom i vrelo kontinentalno sa suvim mediteranskim letom.

Naravno, ima postepenih preinačenja i izmedu maritimnog i kontinentalnog pluviomériskog režima, dakle od zapada prema istoku. Tako se, naprimer, u oblasti Kosova i Metohije glavni maksimum padavina pojavi u oktobru, sporedni u junu. Ali je prvi maksimum mnogo izrazitiji od drugog u Metohiji, što nije slučaj na Kosovu, jer je ovde oktobar, prosečno, za nekoliko milimetara kišovitiji od juna. Pored toga, cela oblast ima dva minimuma padavina, u februaru i avguslu. Samo je na zapadu, u Metohiji, avgust dosta suvlji od februara, a na Kosovu je, naprotiv, februar nešto suvlji od avgusta. Ipak, u celini, pluviometriski režim oblasti Kosova i Metohije razlikuje se od istog režima i na zapadu, na Južnom Primorju, i onog na istoku, na pojasu između Niša i Vranja.

Amplituda godišnjeg perioda padavina, izražena u procentima, koleba se u našim krajevima između vrednosti 4,4 i 15,0 . Najravnomernije su padavine raspodeljene po mesecima u planinskom kraju od Grmeča preko Bjelašnice do Durmitora, gde relativno godišnje kolebanje nije veće od 6%. Odatle se povećava u svim pravcima, osobito na jugozapad, prema Jadranu, a manje prema severozapadu i severoistoku. Na Primorju se, uglavnom, povećava od severozapada na jugoistok, s maksimumom u Skadru ($12,2 \%$) i na Crkvicama $(15,0 \%$). Velike su amplitude i oko severne granice: Bovec, na Soči, $10,6 \%$, Bački Vinogradi $8,5 \%$.

Broj dana sa padavinama

Sama visina padavina u nekom mesecu nije dovoljna da označi i njen klimatski značaj. Za praktične potrebe je od važnosti i broj dana s padavinama u nekom mesecu. Za povoljan razvitak vegetacije nije svejedno da li če određena visina kiše u nekom mesecu pasti u tri ili četiri dana, kao jači ili slabiji pljusak, ili ce se raspodeliti na deset dana i više, kad od nje imaju veće koristi zasejano zemljište i cela ostala vegetacija. Isto je tako za higijeničara važnije znati koliko je dana spadavinama u kome mesecu, osobito dana sa nešto jačom kišom, nego kako je ona raspodeljena po mesecima. Tab. 10 daje podatke o broju dana s padavinama od $0,1 \mathrm{~mm}$ i više za veći broj mesta u zemlji. Po njoj izlazi da mala relativna godišnja kolebanja, izvedena na isti način kao kod padavina, imaju planinski krajevi u zapadnom delu Bosne (Sarajevo $2,6^{\circ} \%$, Bihać $3,3 \%$, i velike ravnice na severu (Bački Vinogradi $2,5 \%$, Tuzla i Beograd $2,9 \%$). To znači da je broj dana s padavinama veoma ravnomerno raspodeljen po mesecima \mathfrak{u} tim predelima. Odatle se relativno godišnje kolebanje naročito povećava prema Jadranu (Hvar $8,2 \%$, Dubrovnik $9,0 \%$, Skadar $8,9 \%$) i prema Egejskom Moru (Skopje $7,5 \%$, Solun $8,8 \%$). S druge strane se iz tablice vidi da najveći godišnji broj dana s padavinama ima, u srednju ruku, Slovenija. Odatle se godišnji broj dana s padavinama

Tab. 10. Prosečni broj dana s padavinama od $0,1 \mathrm{~mm}$ i više i prosečni dnevni intenzitet padavina u mm
Average number of days with rainfall from 0.1 mm and more, and the average daily intensity of rainfall in mm
(Gornji red: broj dana s padavinama, donji red: intenzitet)
(Upper line: number of days with rainfall, lower line: the intensity)

Mesto - Place	1	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	God. Year
Obir	10	8	12	14	15	15	14	13	11	14	10	10	146
	7,4	7,6	8,2	8,3	9,7	10,9	11,6	11,5	10,9	10,5	9,6	7,1	9,8
Maribor	8	8	10	11	14	13	11	11	10	11	10	10	127
	5.2	5,9	6,2	7,3	7,2	8,6	9,3	10,6	11,1	10,1	7,7	6,5	8,0
Čakovec	8	7	9	10	10	11	10	,	8	10	,	8	109
	6,2	6,1	6,6	8,3	10,0	8,8	8,9	11.2	11,1	10,9	7,9	8,0	8,8
Gorica	9	10	12	13	16	15	14	11	11	14	11	12	148
	8,4	8,1	9,4	7,8	9,6	11,3	9.5	12.5	12,4	12,5	11,7	12,0	10,5
Ljubljana	11	7	12	14	15	17	13	12	11	14	13	13	151
	7,3	7,3	8,1	12,3	12,8	10.1	10,4	12.2	13,2	12,1	10,1	8,6	9,6
Rijeka	10 10 10	10 9,6	13 9,8	13 9,3	14,	15 8,5	9 8,7	10	12,	14.2	13	12	147 10,9
Učka	10	9	12	12	15	15	11	9	11	14	12	13	143
	22,5	34,1	28,9	21,7	17,8	15,1	17,4	19.1	19,3	23,9	28,2	29,1	23,1
Pula	,	8	10	11	10	9	8	.	9	12	11	12	115
	5,6	6,2	6,6	6,5	6,4	7,1	8,2	9.5	10,1	10,0	8,2	8,2	7,7
Hvar	10	9	10	,	7	,	,	4	6	9	11	12	97
	7,8	7,3	7,2	6,6	5,8	6,2	6,1	8.9	10,5	10,3	10.1	8,9	8,1
Dubrovnik	10	9	11	11	9	7	5	4	7	12	12	14	111
	14,3	12,4	12,2	10,3	9,8	6,9	6,6	11.8	14,0	15,7	14,1	13,4	12,2
Crkvice	14	13	14	14	12	11	8	6	9	13	14	15	143
	35,5 10	36,8	39,1 11	30,7	21,5	14,1	9,7	13.1	29,2	46,7 10	56,5	47,3	34,6
Skadar	13,1	11.7	11.5	13,1	88	8 8	11,8	2	7 14.4	10 20,7	11.0	111	101
Gospić	13,1 13	12	15,5 13	13,1	13	8,8	11,8 8	14.5	14,4 10	13	19,	15	14,6 143
	11,1	12,0	11,6	11,2	8,9	10,2	11,8	12.6	15,7	18,6	15,4	12,2	12,6
Livno	11	10	12	12	12	12	8	7	10	12	11	12	129
	8.0	8,6	9,5	9,3	7,4	7,6	9,3	10.4	13,3	13,2	12,7	10,7	10,0
Mostar	9	8	11	12	11	10	5	6	7	12	11	12	114
	10,9	11,6	11,3	11,1	8,3	7,4	8,8	9.5	12,8	13,7	12,8	11,7	11,0
Zagreb	11	9	12	13	14	14	11	10	10	13	13	13	143
	4,3 10	4,7 9	5,2 9	111	6,0 12	6,9	7,2 8	8.1 8 8	8,2 9	8,3 10	11	5,0	6,3 120
Bihać	7,6	9,6	9,9	11,2	11,0	10,3	11,5	13.2	14,2	14,8	12,5	10,3	11,3
Banja Luka	12	11	12	14	15	13	10	9	9	12	12	13	142
	5,4	5,4	5,8	7,5	7,7	9,4	9,2	9.5	9,6	9,7	6,7	5,8	7,5
Sarajevo	12	11	12	13	15	15	11	11	12	13	14	13	152
	5,2	4,9	6.0	5,5	5,4	6,1	5,7	6.2	6,3	7,7	6,1	5,6	5,9
Bjelašnica	15	14	16	17	19	17	14.	13	13	15	15	16	184
	11,5	11,7	11,8	10,9	8,9	9,1	7,7	8.2	10,3	12,7	11,3	11,2	10,4
Pljevlja	10	9	10	12	13	13	20	7	7.	10	9	10	120
Osijek	5,3	5,2 10	11.5	5.1 13	5,9 13 1	6,8 12	7,0 10	7.1 9	7,5	8,7	7,4	6,0	6,4 136
	3,7	3,6	4,5	5,3	6,2	7,1	6.1	6.6	6,1	5,9	4,6	3,4	13,2
Backi Vinogradi	10	9	10	10	11	11.	9	8	9.	11	10	11	119
	3,1	3,3	3,7	5,6	6,2	7,3	6,9	6.3	5,6	5,0	3,8	3,1	4,9
Beograd	13	10	12	13	13	13	10	,	9	11	12	13	138
	3,1	3,3	3,7	4,5	5,7	6,0	6,3	6.0	5,2	5,6	4,4	3,7	4,7
Tuzla	12	10	12	13	14	14	10	10	10	11	11	12	139
	4,6	4,7	5,3	6,4	7,0	8,1	9,1	8.4	8,3	7,7	5,9	5,3	6,7
Titovo Užice	11	10	13	12	14	14	11	9	8	11	10	11	134
	4,8	4,4	4,6	5,0	6,5	8,0	8,2	6.7	7,1	7,0	6,4	5,1	6,1

Mesto - Place	1	11	III	IV	V	VI	VII	VIII	IX	X	XI	XII	God. Year
Kragujevac			10	12	13	13	9	8	8	10	10	9	119
	4,9	5,1	4,2	4,3	6,1	6,8	6,1	6,3	5,0	5,3	5,3	5,1	.5,4
Nis	9	9	9	12	13	12	7	7	7	10	9	10	114
	4,2	4,0	4,0	4,7	5,0	5,5	5,8	6,3	6,2	6,5	5,3	4,2	5,1
Mitrovica	9	7	8	10	13	10	6	7	5	10	8	11	104
	4,0	4,6	4,0	5,0	5,2	7,6	8,1	4,8	7.1	7,5	6,5	4,4	5,6
Vranje				11	13	12	7	-6	7	9	10	11	115
	4,1	3,8	3,9	5,0	5,4	5,5	5,8	6,2	6,7	7,6	5,5	4,5	5,3
Skopje	7	6	6	8	10	8	4	5	4	7	6	9	80
	5,1	4,3	4.5	5,6	5,6	5,8	6,1	6,7	7,4	8,0	6,5	6,0	5,9
Bitola	9	10	10	11.	12	10	6	5	6	9	9	11	108
Solun	5,6	5,5	5,4	5,9	5,8	5,8	6,2	7,7	7,6	8,5	8,9	6,6	6,5
	8	$\begin{array}{r} 7 \\ 20 \end{array}$	8	8	8^{8}	6	4	3	4	6	8	10	80
	4,3	3,9	4,2	5,4	6,1	6,5	6,3	7,1	6,2	8,4	6,9	4,3	5,6

uglavnom smanjuje prema istoku, jugoistoku i jugu. Tako Bački Vinogradi imaju godišnje svega 119 dana s padavinama, Skopje i Solun 80 dana, Dubrov. nik 111 dana, Hvar 97 dana, Palagruža 75 dana s padavinama godišnje

Visoke planine imaju dosta vecu visinu i veću cestinu padavina u svima mesecima prema okolnim dolinama, poljima ili kotlinama. Tako Bjelašnica, prema Sarajevu, ima oko dvaput veću godišnju visinu padavina $i_{\text {, }}$ otprilike, za četvrtinu više padavinskih dana. Crkvice, prema Kotoru, imaju oko triput veću visinu padavina, a broj padavinskih dana je i ovde za cetvrtinu veci. Decije oporaviliste na Peristeru ima, s druge strane, približno za polovinu vise padavina od Bitole, usled manje razlike u visini ovih mesta, dok je kod broja padavinskih dana sličan uslov kao u dva druga planinska predela. Jasnije se ističu ove razlike u godišnjoj visini padavina ako se izraze pluviometriskim gradijentom, tj. za koliko se milipadavina ako se izraze pluviometriskim gradijentom, prosečno, poveca godis̃ja visina padavina na svakih 100 m visine. metara, prosecno, poveca godisnja visina padavina na svakih 100 m visine.
U tom slučaju se dobiva za Crkvice vertikalni gradijent od 281 mm , za Bjelas̆nicu 70 mm , za Perister 63 mm .

Intenzitet padavina

Podelom normalne mesečne visine padavina s odgovarajućim brojem padavinskih dana dobiva se prosečni intenzitet. Treba naročito istaći da intenzitet padavina odgovara samo broju dana s padavinama, a ne broju kalendarskih dana u dotičnom mesecu. Intenzitet se, u istoj klimatskoj oblasti, povećava uglavnom sa visinom. Stoga se planinski vrhovi odlikuju najvecim intenzitetom padavina, ali je ovaj mnogo veći u primorskim, ne go \mathfrak{u} kontinentalnim planinama, kao što se vidi iz tab. 10. Pored toga, kod godišnjeg perioda intenziteta padavina postoje značajne razlike. Mesta pod uticajem Jadrana imaju glavni maksimum intenziteta u nekom jesenjem mesecu, sporedni, u nekom poznozimskom mesecu in aprilu, a glavni minimum je obično u jednom od letnjih meseca. Kontinentalna mesta se odlikuju najvećim intenzitetom i nekom letnjem, najmanjim, u nekom zimskom mesecu. Prelazna oblast između sredozemnog i kontinentalnog podneblja (Zagreb, Banja Luka, Pljevlja) pokazuje najveći intenzitet padavina u jednom od jesenjih meseci, najmanji u poznoj zimi ili martu. Takvi uslovi vladaju i u jugoistočnom kraju Srbije (Niš, Vranje) i u Makedoniji (Skopje, Bitola). Dnevni intenzitet padavina od 3,5 do $7,5 \mathrm{~mm}$, koliki je u vegetacionom periodu naših žitarskih krajeva, sasvim je povoljan jer je u vezi sa 9 do 15 padavinskih dana u svakom mesecu.

Periodi kiše i suše

Pitanje o periodima kiše i suše, tj. o broju uzastopnih dana s kišom i bez nje, takođe je važno za praktične potrebe. Treba odmah istaći da su periodi suše kod nas znatno duži od perioda kiše, sa izuzetkom planinske Slovenije, gde je prosečni period kiše (11,9 dana) otprilike za 2 dana kraći od prosečnog perioda suše (14,1 dan $)$. U Hvaru je, međutim, prosečni period suše (12,9 dana) oko 3,8 puta duži od prosečnog perioda kiše (3,4 dana). Slično je i u Skopju. Tu je srazmera između prosečnog perioda suše (6,8 dana) i kiše (1,8 dana) takođe $3,8: 1,0$. Izgleda da su ovi periodi nezavisni od apsolutne visine mesta. Tako je, naprimer, u Sloveniji prosečni period suše na Velikoj Planini (1555 m) 14,3 dana, dok je u nedalekom mestu Luče (520 m) 14,5 dana. Karakteristično je da Slovenija, Vojvodina, Srbija, Kosovo i Metohija imaju podjednake prosečne periode suše od 12,8 do 15,7 dana, a tako je i u planinskom kraju Crne Gore. Južni deo Srbije i Makedonija, na istoku, a Zeta, na zapadu, imaju duži period od 15,8 do 18,4 dana. Drugačije je kod apsolutno najdužeg perioda suše koji traje po nekoliko sedmica. Ovaj je najduži u krajevima sa srazmerno suvim letom (Jadransko Primorje, Makedonija) i u najkontinentalnijim mestima (istočni deo Srbije); uglavnom se povećava od severa prema jugu. Kao primer za ovo uzeće se primorska mesta: Opatija 38 dana, Mali Lošin 51 dan, Hvar 50 dana, Titograd 70 dana. Slicno je 1 u istocnom delu države: Beograd 26, Rankovićevo 33, Niš 46, Vranje 61, Veles 70 dana Apsolutno najduži period kiše ima prosečno trajanje od 14,6 dana, prema prosečnom apsolutno najdužem periodu suše od 37,2 dana. Srazmera izmedu njih je otprilike $1: 2,6$. Najravnomernije uslove imaju Slovenija i planinski deo Crne Gore, gde je odgovarajuća srazmera $1: 1,8$, odn. $1: 1,9$. Najekstremniji uslovi, međutim, vladaju u Makedoniji, gde je srazmera izmedu prosečnog apsolutnog perioda kiše i suše $1: 4,4$, i u crnogorskoj nizij (Zeta i okolina Kotorskog Zaliva), sa srazmerom 1:4,8. Apsolutno najduži period kiše pokazali su Sv. Ilj pod Turjakom (593 m) i Žiri (480 m) sa 25 dana u aprilu odn. junu, a mnogo dalje na jugu Cetinje (672 m) sa 27 dana u decembru.

Sneg

Sneg je redovna zimska pojava u najvećem delu Jugoslavije. Broj dana sa snegom se, uglavnom, povećava od nižih prema višim širinama od Primorja prema unutrašnjosti, a u svim krajevima od nižih prema višim mestima. To će se pokazati na dva primera (tab. 11):

Tab. 11. Prosečni broj dana sa snegom i srednji period trajanja
Average number of days with snowfall and the mean pertod of duration

		Predeo Region	Visina Alitude	Broj dana sa snegom Number of days with snowfall	Sred. period trajanja Mean period of duration
Istra Istria	6 mesta na obali places on seacoast 2 mesta u untutrašnjost places in the interior 3 mesta u unutrašnjosti places in the interior 1 Učka Učka		26 m	2,5	XI-III
			248	5,6	XI-IV
			435	9,6	$X-1 V$
			950	23,5	IX -V

	Predeo Region		Visina Altitude	Broj dana sa snegom Number of days with snowfall	Prosečni granični datum Average date limits
Bosna Bosnia	8 mesta	(places)	157	20.9	$28 \mathrm{XI}-15 \mathrm{III}=108{ }_{\text {dana }}^{\text {days }}$
	4	"	243	28.0	$19 \mathrm{XI}-2 \mathrm{IV}=135$ „
	2 "	"	640	31.9	$7 \mathrm{IX}-19 \mathrm{IV}=164$
	3	"	1043	42.2	$13 \mathrm{X}-2 \quad \mathrm{~V}=201$
	1 Bjelašnica Bjelas̆nca		2067	107.7	14 VIII-4 VI $=294$

Ali, sneg pada na Bjelašnici, povremeno, i van srednjih graničnih datuma, tj. prvog i poslednjeg snega, u toku celoga leta. Mesta u Sloveniji imaju 17,6 do 59,7 dana sa snegom, unutrašnjost Hrvatske 21,7要do 69,6 dana, Bosna 15,8 do 64,4 dana, planinski predeo Crne Gore 15,9 do 32,5 dana, Vojvodina 11,7 do 24,5 dana, Srbija 14,3 do 34,8 dana, Kosovo i Metohija 12,4 do 19,0 dana, Makedonija 5,4 do 16,9 dana, Primorje 1,3 do 10,3 dana, Hercegovina 1,9 do 11,0 dana, niski deo Crne Gore 1,4 do 4,1 dan. Retko padanje snega na Srednjem i Južnom Primorju ne počinje pre polovine decembra, usled naročitıh toplotnih uslova Jadrana: iz istih razloga sneg ovde padne, ponekad, i u aprilu. Na Golom Vrhu (1308 $\mathrm{m})$, medutim, ima godišnje 35,4 dana sa snegom u srednju ruku, ito od septembra do maja.

Udeo snega u godišnjim padavinama
Udeo snega u godišnjim padavinama prilično je neznatan u nižim krajevima, oko 8 do 15% od celokupne godišnje visine padavina. I udeo snega se menja u geograf skom rasprostranjenju otprilike kao i broj dana sa snegom. Stoga postaje sve izrazitiji s povećanjem visine. To ce se izneti za nekoliko mesta u Sloveniji, gde je udeo snega u godišnjim padavinama ovoliki: Kostanjevica (158 m) $10,5 \%$, Ljubljana (306 m) $15,9 \%$, Sodražica (533 m) $17,0 \%$, Sv. Križ-Planina (1050 m) $21,7 \%$, Velika Planina (1555 m) $29,5 \%$, Obir (2047 m) $48,5^{\circ} \%$ Kako se menja udeo snega s visinom prikazano je u dijagramu za mesta \mathfrak{u} Sloveniji i Bosni (sl. 15). Iz njega se vidi da udeo snega u godišnjitn padavinama nije linearan, tj. da se za istu razliku u visini ne povećava za isti procent, nego se povećava, za istu visinsku razliku, tim više, što je veća visina. Udeo snega je znatno manji u primorskim
krajevima, a to zavisi i od otstojanja mesta od morske obale, kao što pokazuje sledeći primer:

U Vojvodini i Srbrji postoje slični uslovi kod udela snega kao u Sloveniji, približno na istoj apsolutnoj visini, na primer Bečej (82 m) $12,7 \%$, Beograd (132 m) $14,8 \%$, Vel. Gradište (83 m) $14,3 \%$, Koviljača (125 m) 159^{0}. Kragujevac (175 m) $19,8 \%$ Zaječar (128 m) $20,0 \%$, Titovo Užice $15,9 \%$
$(432 \mathrm{~m})$
Kragujevac $(105 \mathrm{~m})$
$1^{0} \%$ Niš $(195 \mathrm{~m})$
$15,6^{\circ} \%$. Udeo snega je sasvim neznatan u Make(432 m) $25,1 \%$ Nisisi: Skopje, $(240 \mathrm{~m}) 9,6 \%$, Prilep (661 m) $13,9 \%$.

Snežni pokrivač

Period trajanja snežnog poktivača je obično kraci od perioda trajanja snega, tj. vremena između srednjeg datuma prvog i poslednjeg snega. Srednji datum prvog dana sa snežnim pokrivačem nastaje, uops̊te, oko 14 dana datum prede sredneg datuma prvoga snega, dok srednji datum poslednjeg dana posle srednjeg datuma prosga nezo pokrivačem nastaje oko 14 dana pre srednjeg datuma posledsa snez̃im pokrivacem snega. Prema tome, prosečni period snežnog pokrivača u Jugoslaviji nieg snega. Prema tome, prosecni period perioda snega. Ali ima razlike je oko mesec dana kraći od prosečnog perioda snega. Anim mokrazače između zapadnog i istočnog dela dežave. Prvi dan sa suežnim pokrivacem pojavi se u zapadnom delu, prosečno, oko 26 dana pose prvog snega, a nestane oko 20 dana ranije od poslednjeg snega. snega, a poslednji dan sa snežnim pokrivačem prestane oko 12 dana pre poslednjeg snega. To se vidi dosta jasno ako se uporede prosečne prilike \mathfrak{u} Bosni i Hercegovini i u Srbiji (tab. 12).

Tub. 12. Srednji datumi prvog i poslednjeg snega i snežnog pokrivaća
s razlikom između jednih itrugih
Mean dates of the first and last snow and snow cover with the difference between the former and the latter

Republika Republic	Sred. datum snega Mean date of snowfall		Sred. datum snež. pokr. Mean date of snow cover		Razlika izmedu Difference between	
	$\begin{aligned} & \text { prvi } \\ & \text { first } \end{aligned}$	posl. last	$\underset{\text { first }}{\text { prvi }}$	posi. last.	$\underset{\text { first }}{\text { prvog }}$	posl. last
1) Bosua i Hercegovina	22 XI	5 IV	18 XII	10 III	-26	26
2) Srbija	30 XI	21 III	11 XII	12 II	-11	9
Razlika 1-2 Difference $1-2$	-8	15	7	-2		

Po ovim podacima izlazi da se prvi sneg, prosečno, pojavi u Bosni i Hercegovini 8 dana pre nego u Srbiji, a poslednji sneg 15 dana kasnije. Suprotno ie, i užim grancat kod prosečnog prvog i poslednjeg dana sa snežnim pokrivačem. Posledica toga je duží period snega, a kračı period sa snežnim pokrivacem. Posiedica toga eni prema Srbiji; po tome nastaje i véća tazlika u trajanju perioda snega i snežnog pokrivača u prvoj nego u drugoj republici (tab. 13).

Ali je stvarni broj dana sa snežnim pokrivačem za polovimu manji od razdoblja između srednjih graničnih datuma, kao što je i kod snega. Tako je, naprimer, u Beogradu trajanje snežnog pokrivača ograničeno srednjim datumima od 5. XII do 12. III, dakle na 97 dana, dok je stvarni srednji godišnji broj dana sa snežnim pokrivačem 44,3 dana, dakle preko polovinu manji od odgovarajućeg perioda.

Izgledalo bi da će dužem trajanju perioda snega od perioda snežnog pokrivača odgovarati i veçi broj snežnih dana od broja dana sa snežnim pokrivačem u istom mestu. Stvarno je, međutim, drugačije. Broj snežnih

Tab. 13. Trajanịe perioda snega i snežnog pokrivača sa razlikom
The duration of snow period and snow cover with the difference

Republika Republic	Period stiega Snow period	Period snež. pokr. Snow cover period	Razlika Difference
1) Bosna i Hercegovina	134 dana (days)	82 dana (days)	52 dana (days)
2) Srbija	111		20
Razlika 1-2 Difference 1-2	23	-9	32

dana je, na osnovu dosta oskudnih podataka, oko dvaput do triput veći od broja dana sa snežnim pokrivačem u Gorici i u. Hercegovini. U ostalim krajevima je broj dana sa snežnim pokrivačem dosta veci od godisnjeg broja snežnih dana, osobito u Sloveniji i planinskom delu Crne Gore, preko dvaput veći, a u mnogo manjoj meri u Makedoniji i niskom, primorskom delu Crne Gore, približno za 30%. To je razumljivo, jer se isti sneg, ul zimskim mesecima, može nekoliko dana održati na zemljinoj površini pri temperaturi ispod tačke mržnjenja.

Trajane i visina snežnog pokrivača pokazaće se za četiri karakteristična mesta, po jedno dolinsko na zapadu i istoku, jedno u kraškom polju blizu mora i jedno u Gorskom Kotaru, bogatom padavinama isnegom (tab. 14).

Tab. 14. Broì dana sa snežnim pokrivačem u pojedinim mesecima, njegovo neprekidno trajanje i visina u nekim mestima

The number of days with snow cover in single months,
its permanent duration and depth in certain places

$\begin{gathered} \text { Mesto } \\ \text { Place } \end{gathered}$	Visina Altitude	Broj dana sa snežnim pokrivačem Number of days with snow cover										Godišnji Annual	
		IX	X	XI	XII	1	II	III	IV	V	Σ	maks. max.	min. min.
Ljubljana	306 m		0,5	2,1	15,6	18,2	14,5	6,2	0,6		57,7	97	13
Beograd	132		0,1	1.7	10,7	15,5	11,8	4,4	0,1		44,3	89	6
Gosplic	565	0,1	0,9	3,5	16,4	21,4	20,0	11,6	1,7	0,1	75,7	115	29
Ravna Gora	793	0,5	3,9	5,6	20,8	24,0	24,2	16,3	4,6	0,4	100,3	129	64

Mesto Place	Neprekidno najduže trajanje i visina snežnog pokrivača Permanent longest duration and depth of snow cover				
	sred. mean	maks. max.	sr. vis. mean depth	st. maks. vis. mean max. d	maks. vis. max. depth
Ljubljana	$\begin{aligned} & \text { dana } \\ & \text { days } \end{aligned} 42,1$	92	12,8 cm	29,3 cm	146 cm
Beograd	27,1	78	14,1	30,9	65
Gosplí	40,0	103	15,0	57,7	185
Ravna Gora	55,2	130	20,7	86,5	150

Gospić, oko 20 km , i Ravna Gora, oko 27 km daleko od mora, imaju ne samo znatno veći broj dana sa snežnım pokrivacem, vec 1 dosta vecu visinu odn. debljinu snega od Ljubljane i Beograda. Najveći godišnji broj dana sa snežnim pokrivačem je u dva prva mesta za trećinu, a najmanji godišnji broj dana gotovo za pet puta veći, nego a dva druga dolinska mesta. Isto je tako i srednja maksimalna visina u prvim mestima preko dvaput veća, nego u drugima. Uporedljivost gornjih vrednosti nije mnogo otez̃ana činjenicom, što upotrebljeni podaci nisu iz istog broja godina. Drugačiji su uslovi u mestima koja su niska i slobodno otvorena prema moru ili se nalaze pri obali. Tako je u Titogradu najduži isprekidan snežni pokrivač trajao 12 dana sa stednjom visinom od $8,2 \mathrm{~cm}$, maksimalnom od 31 cm . Mesta na ostrvima ili dalmatinskoj obali imaju godišnje tek jedan do dva dana sa snegom, usled veoma blagih zima, te ovde ne postoje uslovi za dugotrajniji snežni pokrivač.

Nepogode

Nepogode ili nevremena, pracena električnim pražnjenjima u atmosferi, česte su pojave kod nas, ali najviše ograničene na toplije mesece, s maksimalnom čestinom u jednom mesecu od maja do jula. Ređe ih je a

Tab. 15. Srednij i stvarni godišnjı broj dana s nepogodama i srednji period njihove polave
The mean and actual annual number of doys with thunderstorm and the mean period of The mean and aciual annual number of doys with thin
their occurence

Predeo Region	Sr. vis. Average altitude	Stednji broj dana Mean number of days	Stvarni broj dana Actual number of days	Srednji period Mean period
Soča i Slovensko Primorje	555 m	29,4	20-35	I-XII
Istra	145	27,2	17-39	I-XII
Slovenija	348	24,6	15-36	$11-X I I$
Hrvatska, severna	253	27,7	16-45	II-XI
Bosna	594	18,7	9-28	III-XI
Hercegovina	486	20,5	7-31	I-XII
Crna Gora	624	23,2	6-40	$1-\mathrm{XII}$
Primorje	22	22,2	15-36	$1-X I I$
Vojvodina	90	24,2	13-32	II- -XI
Srbija	203	23,1	14-34	III-XI
Kosovo-Metohija	526	17,7	$7-20$ $10-30$	I1-X1
Makedonija	356	20,7	10-30	I1-XII

hladnijim mesecima, a javljaju se, prosečno od februara do novembra. Samo uzan pojas uz Primorje, približno, od Šibenika preko Metkovića do

Kotorskog Zaliva, ima česte nepogode u pozno proleće ili ujesen, ili u oba ova doba, ali nastaju i u svima ostalim mesecima. Godišnji broj dana s nepogodama uglavnom se smanjuje od severa na jug i od zapada na istok, kao što pokazuje tab. 15.

Iz tablice se, donekle, vidi da se godišnji broj dana s nepogodama povećava s visinom. Jasnije to pokazuju ovi primeri: Skaljari (20 m) 23,9 dana, Crkvice (1097 m) 35,0, Goli Vrh (1308 m) 43,4 dana; Konjic (280 m) 8,2, Sarajevo (637 m) 24,4, Bjelašnica (2067 m) 38,3 dana. Ali, to nije slučaj kod svih planina. Tako, Učka ima manji broj dana s nepogodama od Pule, a Obir manje od Celovca.

Godišnji broj dana s nepogodama uglavnom se smanjuje prema jugu i na Primorju, ali je karakteristično da se broj zimskih nepogoda u istom pravcu povećava: Gorica 0,7 , Opatija 1,8, Mali Lošinj 2,5, a južnije ostaje nepromenliv; Zadar, Hvar i Skadar imaju po 2,9 dana s nepogodama u tokı zime Goli Vth ima u zimskim mesecima cak 9,5 dana s nepogodom. To je 11 neposrednoj vezi sa čestim sudarima toplih i hladnih vazdušnih masa, koji su toliko tipični za zimsko vreme na istočnoj polovini Jadrana.

Grad

Pojava grada (tuče ili leda) u nepostednoj je zavisnosti od nepogoda, jer se uvek luci iz kumulonimbusa, ali je mogo redi. Pored toga, grad je ograničen i na kraći period od nepogoda. U Sloveniji i severnom delu Hrvatske prosečno se javlja od marta do oktobra, u istočnom delu dižave, od Vojvodine do Makedonije, od marta do septembra, u Bosni od marta do avgusta, u primorskim krajevima cele godine. U unutrašnjosti je najčešći grad u poznom proleću, osobito u maju, na Primorju u prelaznim godišnjim dobima (na pr. Opatija) ili zimi (Hvar). Grada je, u srednju ruku, ajviše it severozapadnom delu Jngoslavije i na celom Primorju najmanje najvise u sern. Prosečni godišni broj dana s gradom, i ekstremne vredna jugoistoku. Prosečni godišnji broj dana s gradom, 1 ekstremne vrednosti, su u pojedinim krajevima države ovoliki: Soča sa Slovenskim Pri-
morjem i Istrom 2,9 dana $(1,4-3,9)$, Slovenija $2,1(0,8-4,2)$, severni deo Hrvatske $1,9(0,8-3,4)$, Primorje $2,1,(1,1-3,9)$, Hercegovina $1,8(1,1-2,5)$, Crna Gora $1,3(0,6-4,3)$, Bosna $1,2(0,3-3,3)$, Srbija $1,2(0,5-2,5)$, Voj vodina $1,1(0,6-1,5)$, Kosovo i Metohija $0,8(0,5-1,3)$, Makedonija $0,8(0,1$ -3,4). Najvise grada imajı: Cetinje 4,3 dana, Žiti 4,2, Pazin i Skaljari po 3,9, Divača, Zagreb-Grič i Prilep po 3,4, Lepoglava 3,3, Bovec i Tuzla po 3,1 dan. Najvećim brojem dana s gradom odlikuju se na istoku, pored Prilepa Osijek 2,7 dana, Vmjačka Banja 25 dana Beograd 2,1 Kruševo 19 dana Visoka mesta imaju, takode, veliki broj dana s gradom: Učka (950 m) 4,7 dana, Sv. Križ-Planina (1050 m) 5,7 dana, Bjelašnica (2067 m) 9,3 dana, Gacko (960 m) 4,8 dana.

Čestina tišina i vetrova različite jačine

Na kraju ce se dati nekoliko podataka o čestini tišina i vetrova različite jačine u pojedinim krajevima Jugosiavije. Gotovo cela Slovenija i zapadna Hrvatska do linije Apače - Ptui - Zagreb - Topusko - Slunj -Ogulin-Čabar imaju a januaru 60 do 70% tisisina i slabih vetrova (0 do $2 \mathrm{~m} / \mathrm{sek}$); nešto više od 60% imaju Baranja, Bačka zapadno od linije Sta-nisisí-Palanka Slavonija u ravnici od Broda i Đakova do Vinkovaca, kao i severoistočni ki kraj Bosne, obuhvatajući Gradačac i Brčko; svi ostali krajevi imaju manje od 60% tišina i slabih vetrova, osobito celo Primorje sa ostr-
vima, donekle i Banat sa severnim i severoistočnim delom Srbije. Nasuprot tome, Dalmacija, Hercegovina, severoistočni deo Srbije i Banat imaju preko 40% od svih vetrova i tísina umerene i jake vetrove (3 do $8 \mathrm{~m} / \mathrm{sek}$), severozapadni deo Slovenije, izmedu Triglava-Ljubljane - Novog Mesta-Roga-teca-Pohorja $20-25^{\circ} \%$, a svi ostali krajevi preko 25 do 40%. Najćeśće žestoke i olujne vetrove (preko $10 \mathrm{~m} / \mathrm{sek}$) ima jugozapadni deo države, zestoke na istoku do linie Tolmin-Divača-Mrkopalj-Bibac-Travnik - otprilke na istoku Kolasin, gde im je ćestina preko 50%, as druge strane najkon--Borac-Kolasin, gde im je cestina preko or as a druge stane 40% dok je tinentalniji krajevi: Banat i severoistočni deo Srbije sa preko 40% o, dok e
u oblasti Velike Peščare cestina ovih vetrova povecana na preko 60%. Ta u oblasti Velike Peščare čestina ovih vetrova povećana na preao 60%. Ta
dva velika predela su oblasti slapovitih vetrova, bure na zapadu kos̃ave na istoku.

Slični su uslovi i leti, u mesecu julu. Najviše tišina i slabih vetrova, preko 60°, imaju Slovenija, Hrvatska, bez predela od Cakovca - Zagreba -Siska-Virovitice, i najseverniji deo Bosne, a minimum, cestine je a Banatu, Dalmatinskom Primorju i na ostrvima, manje od 45% a na spo-
 laašijim otocima, Visu i Palagružu, manje od 30%. Umerent/ aki verrove najčeśći su na ostrvima i Primorju od Biograda preko Mostara do Budve,
60 do $40^{\circ} \%$, zatim u Vojvodini i severnom delu Srbije, otprilike do Zapadne 60 do 40%, zatim u Vojvodini i severnom delu Srbije, otprilike do Zapadne
Morave, 35%, da se u zapadnom delu Banata poveća do 45%. Ti vetrovi su redi u ostalim krajevima, osobito u Sloveniji i u zapadnon delu Hrvatske, gde im je cestina 25 do 20%. Z̃estokih i olujnih vetrova Je, i leti, najviše na ostrvima i na Primorju, od Zadra preko Skradina do Omiša, 6 do 4%, zatim u južnom delu Bosne, južnije od Sokolca i Visokog, i u severoistočnom kraju Crne Gore, preko 4%.

Ako se uzmu svi vetrovi, bez obzira na njihov pravac, najveća im je srednja brzina u januarui 3,5 do $4,5 \mathrm{~m} / \mathrm{sek}$ u jugozapadnom delu Bosne, celoj Hercegovini i Crnoj Gori; srednjom brzinom od 3,0 do $3,5 \mathrm{~m} / \mathrm{sek}$ vetrovi duvaju u Banatu i severoistočnom delu Srbije, kao i u Makedoniji, dok su slabiji 11 ostalim krajevima. Sličan je raspored brzine vetrova u julu, samo su tad nešto slabiji. Velika srednja brzina vetrova u Makedoniji samo su ta je tamošnjih najezda hladnoće, poznatog hladnog, slapovitog posledica je "" Kateristično je ul Makedoniii što se u dolini Vardara, vetra "vardarca". Karakteristično je u Makedonij, sto se, u doini Vardara, broj dana sa žestokim i olujnim vetrovima povecava od severa
Skopje 2,2 dana godišnje, Veles 4,7 dana, Stip i Demir Kapija sa po 12 Skopje 2,2 dana godišnje, Veles 4,7 dana, Stip i Demir Kapija sa po 12
dana verovatno pod uticajem sve visíh tempetatura i sve labilnijeg atmodana, verovatio
sferskog stanja.

Svi spomenuti slapoviti vetrovi u Jugoslaviji nanose velike štete. Na Jadranu se, pre početka bure, pojavi ispred primorskih planina gotovo nepomična draperija oblaka - prema moru okrenuta „zastava". Kad se bura potpuno razvije, odgovarajuci, prosečno, jačini orkana, tj. brzini od 125 $\mathrm{km} /$ /čas, duva u pojedinačnim kraćim ili dužim udarima od 00 do $60 \mathrm{~m} / \mathrm{sek}$ i tada počne činiti pustoš: odnositi krda, čupati iz korena preko sto godina stara čempresova stabla, zaošijavati u vazduhu veliko kamenje kao pesnica; ljudi koji se zateknu na slobodnim padinama ili užim površima, poležu na zemlju da bi se sačuvali od njene siline. Narocito je opasna za brodarstvo; pri duvanju olujne bure obustavlja se svaki saobraćaj. Pomamna bura je jednom prilikom (4 januara 1889) zahvatila prazan teretni voz na bura je jednom prilikom (4 januara pruzi izmedju Meje i Plasa, vise Bakarskog Zaliva, otkinula osam vonije su, oborila ih preko visokog nasipa, gde su potpuno smrvljeni. Docnije su,
zbog toga postavljeni zaštitni zidovi, u nizovima, na golim krečjačkim zbog toga postavljeni zaštitni zidovi, u nizovima, na golim krečnačkim
strahovitih udara bure. Slično dejstvo ima i košava, koja je najčésćca u ranom proleću i u poznoj jeseni, a tada je i najjača. lona, ponekad, duva brzinom od 18 do $28 \mathrm{~m} / \mathrm{sek}$. odn. 65 do 100 km cas, dakle prilicno vecom brzinom od ktetanja brzog voza. Olujna košava, koja je besnela 25 i 26 februara 1896 11 Srbiji i Vojvodini, nosila je sobom ogromne mase peska februacike Pešare itima je prosto zasula okolinu. Pri tome vetru je, noću sa Velike Pešcar inja jex putički voz iz šina blizu Kraguievca između 25 i 26 februara, izbačen putnički voz iz sina blizu Kragujevca Prošlog dana je teretni voz zapao u pesak tha pruzi izmedju subotice i Čantavira. Isto su tako šine bile zatrpane na železničkoj pruzi od Vrssca do Kovina do 3 metra visokim smetovima živog peska. Ljudi iz Vladimiraca nisu smeli izlaziti iz kuce. jer je svaki saobracaj bio onemogucen Živi pesak se, u takvim slučajevima, kreće tolikom silinom da razranjav lice i ruke. Vardarac nanosi, takođe, veliku štetu. On je najopasniji za brodarstyo od svih slapovitih vetrova na obalama Egejskog mora. ali je obično slabiji od košave, a još manje od bure. Zimi je prosečna brzina ardarca oko $6 \mathrm{~m} / \mathrm{sek}$. Međutim, na slobodnom prostoru između Đevđelije i Dojrana kadikad duva u veoma jakim udarima, koji su možda jači od košave.

Na kraju rada moram izraziti zahvalnost Saveznoj upravi hidrometeorološke službe i republikanskim Upravama hidrometeorološke službe Slovenije, Hrvatske, Bosne i Hercegovine na dobivenim podacima o mnogim praktičnim pitanjima, koja su važna za poljoprivrednike.

Literatura

1. Павле Вујевић: О поднебљу Хвара. Карактеристични ветрови. Гласник Географског друштва. Св. XII. Београд, 1932.
Марко Милосављевић: Физичке особине ветрова у Београду. Научна књига. Београд, 1950.
Whad. Gorczynski: Pression atmosphérique en Pologne et en Europe. Pamietnik Fizyograficzna. Warszawa XXIV, 1917; poljski, izvod na franc.
V. Conrad: The climate of the Mediterranean Region. Bulletin of the American Meteorological Society. Vol. 24, April, 1943.
2. Erwin R. Biel: Climatology of the Mediterranean Area. A publication of the Institute of meteorology of the University of Chicago. Miscell. Reports № 13. Chicago, Illinols, 1944.
3. Viktor Conrad: Beiträge zu einer Klimatographie der Balkanländer. Sitzungsber. d. Akad. d. Wiss. Wien. Mathem.-naturw. Kl. Abt. II a. Band 130. Wien, 1921.
4. П. Вујевић: Утицај околних мора на температурне ирилике Балканског Полуострва. Гласник Српског географског друштва. Свеска 1. Београд, 1912.
5. Павле Вујевић: Поднебље Краљевина Југославија. Географски и етнографски преглед. Штампарија „Давидовић", Павловића и Друга. Београд, 1930.
6. Wilhelm Trabert: Isothermen von Osterreich. Denkschriften d. mathem.-naturw. Cl. d. K. Akad. d. Wiss. Band LXXIII. Wien, 1901.
7. E. Biel: Klimatographie des Kustenlandes. Denkschr. d. Akad. d. Wiss. Band 101 Mathem.-naturw. K!. Abt. II a. Wien, 1927.
8. Oskar Reya: Najnizje in najvisje temperature v Sloveniji. Geografski vestnik. Letnik XV, Ljubljana, 1939.
9. F. Seidl: Das Klima von Krain. Mitt. d. Musealvereins in Laibach. 1891-1902.
10. R. Klein: Klimatographie von Steiermark. - Klimatographie von Österreich Band III Wien, Kommiss. W. Braunmüller, 1909.
11. D-r Stjepan Škreb i suradnici: Klima Hrvatske. Zagreb, 1942.
12. Prof. ing. E. Marki: Klimatske prilike Dalmacije. Splitska društvena tiskanna, 1924 16. Ervin Biel: Das Klima Dalmatiens. Geographischer Anzeiger. Jahrg. 1929, Heft 10/11.
13. J. Moscheles: Das Klima von Bosnien und der Hercegovina. Zur Kunde der Balkanhalbinsel. I. Reisen und Beobachtungen. Heft 20. Sarajevo, 1918.
14. Kurt Hassert: Beifräge zur physischen Geographie von Montenegro mit besonderer Berücksichtigung des Karstes. Petermanns Geogr. Mitteilungen. Ergänz. Band 25. Gotha, 1895 .
15. Charlotte Weber: Versuch einer Landschaftsstude des Zetagebietes in Montenegro. Verlag M. Dünki, Dresden, 1932.
20 Павле Вујевић: Геополитички и физичко-гографски приказ Војводине. Војводина I. Издање Историског друшгва у Новом Саду. Нови Сад, 1938.
16. Róna Zs. és Fraunhoffer L: : Magyarország hőmérsékleti viszonyai. A magy. kir. orsz. meteorol. és földmagn, Intézet. VI. Budapest, 1904 .
17. Viktor Conrad: Beiträge zu einer Klimatographie von Serbien. Sitzungsber, d. K.
Akad. d. Wiss. in Wien. Mathem. - naturw. K1. Abt. II a. Band 125 . Wien, 1916.
18. Марко Милосављевић: Температурни и кишни односи у Н. Р. Србии. ГодиМарко Милосављевић: Температурни и кишни односи у Н. Р. Србији. Годи
шњак Пољопривредно-шумарског факултета Универзитета у веограду, 1948 .
19. E. Kuhlbrodt: Klimatologie und - Meteorologie von Mazedonien. Ein Beitrag zur Klimakunde der Balkanhalbinsel. Archiv d. Deutschen Seewarte. XXXVIII. Jahrg. Kimakunde der
Hamburg, 1920.
20. J.Friedemann: Bewölkung und Sonnenschen des Mittelmeergebietes. Dissert. Leipzig. Altenburg, 1913.
21. P. Vujevic: Sur la durée dinsolation en Yougoslavie: Comptes rendus du IV-e Congrès des Géographes et des Ethnographes Slaves. Sofia, 1936.
22. П. В ујеви ћ: Инсолација на средьем и јужном Јадрапском Приморју. Гласник Геограрског друштва. Св. XIII. Београд, 1927.
23. Павле Вујевић: О трајању Сунчева сјаја у Јужној Србији. Гласник Скопског научног друштва, књ. V1. Одељ. прир. наука, св. 2. Скопље, 1928 .
24. Павле Вујевић: О географској подели и режиму киша у нашојдржави. Г ласник Министарства пољопривреде и вода. Год. V., бр. 20. Београц, 1927.
25. D-r H. Renier: Die Niederschlagsverteilung in Südosteuropa. Mémoires de la Société de Géographie de Beograd. Vol. 1. Beograd 1933.
26. Artur Gavazzi: Geografski razpored največje in najmanjše povprečne mesečne rtur Gavazzi: Geograiski razpored najveçe in najinanjse povprecne mesecine
27. D-r Oto Oppitz: Raspored padalina na Balkanskom Poluotoku po godišnjim dobima и postocima Гласнак Географског друштва. Свеска XXII. Београд, 1936.
28. Oskar Reya: Padavine na Slovenskem v dobi 1919-1939. Geografski vestnik. Letnik XVI. Ljubljana, 1940.
29. D-r Paul Deutsch: Die Niederschlagsverhâltnisse im Mur-, Drau- und Savegebiete -r Paul Deutsch: Die Niederschagsverhalmisse im Mur-, Drau- und Savegebiete
für den Zeitraum 1891 bis 1900 . Geographischer Jahresbericht aus Ósterreich. VI. Wien, 1907.
30. A. Franović-Gavazzi: Die Regenverhältnisse Kroatiens. Mitteil. d. k. k. Geographischen Gesellschaft. Wien, 1891,
31. K, Kassner: Das regenreichste Gebiet Europas. Petermanns Mitteilungen Band 50. Gotha, 1904.
32. Hegy foky K.: Az esó évi periódusa Magyarországon-Die jährliche Periode der Niederschläge in Ungarn. A magy. kir. orsz, meteorol. és földmágn. intézet. VIll Budapest, 1909.
33. Катарина Милосављевић: Кишне и сушне периоде у Н.Р. Србији. Издање Институга за водну привреду H.P. Србије. Београд, 1951.
34. H. Renier: Uber die Gewitter in Südostenropa. Hrvatski geografski glasnik. Zagreb, 1932.
35. Albert Defant: Die Windverhältnisse im Gebiete der ehemaligen Oster. - Ungar. Monarchie. Anhang z. Jahrbuch d. Zentralanstalt f. Meteorol. u. Geodyn. Wien. Jahrg 1920. N. F. Band LVII. Wien, 1924.

[^0]: 1) * znači da su podaci ovog mesta redukovani na duži period
